
Selling Information in Games with Externalities

Thomas Falconer 1 Anubhav Ratha 2 Jalal Kazempour 1 Pierre Pinson 3 1 Maryam Kamgarpour 4

Abstract
A competitive market is modeled as a game of in-
complete information. One player observes some
payoff-relevant state and can sell (possibly noisy)
messages thereof to the other, whose willingness
to pay is contingent on their own beliefs. We frame
the decision of what information to sell, and at
what price, as a product versioning problem. The
optimal menu screens buyer types to maximize
profit, which is the payment minus the external-
ity induced by selling information to a competi-
tor, that is, the cost of refining a competitor’s
beliefs. For a class of games with binary actions
and states, we derive the following insights: (i)
payments are necessary to provide incentives for
information sharing amongst competing firms; (ii)
the optimal menu benefits both the buyer and the
seller; (iii) the seller cannot steer the buyer’s ac-
tions at the expense of social welfare; (iv) as such,
as competition grows fiercer it can be optimal to
sell no information at all.

1. Introduction
Two key trends mark the rise of today’s digital economy: (i)
the collection of vast amounts of data from our ever-more
digitized lives; and (ii) the advancement of computing algo-
rithms, hardware, and platforms that can transform this data
into actionable insights. Many firms are therefore striving to
deploy state-of-the-art machine learning models to improve
their value propositions. Consequently, the demand for data
is growing at an unprecedented rate, to the extent that it has
even been dubbed the world’s most valuable commodity—
the “oil” of the digital age—by The Economist (2017). This
raises an important question: If data is a commodity, then
how should we value it?

Unlike material commodities, data is an intangible asset, the
very definition of which is a matter of debate. In fact, data
is often viewed as an ephemeral entity that can be processed
into subjective information, so it’s value is not an intrinsic
property, but dependent on when, how, and by whom it is
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actually used (Floridi, 2002; 2009). We adopt this view by
modeling a buyer as a decision-maker under uncertainty
that seeks additional information to refine their beliefs about
some state of the world. In turn, a monopolistic seller owns
data relevant to the buyer’s decision, and offers (possibly
noisy) messages thereof in exchange for money, for who the
value of this information depends on their prior beliefs.

We explore what information, and at what price, the seller
should offer to maximize profit. We assume that both parties
compete in a downstream market, so the seller has informa-
tion relevant to each of their payoffs. This is motivated by
growing concerns over the relationship between data and
the distribution of market power in many industries, insofar
that competing firms face asymmetric access to information.
For example, in June 2021, the EU launched an antitrust
investigation into whether Google distorted competition by
restricting third party access to user information for adver-
tising, reserving exclusive use for itself (European Commis-
sion, 2021). Central to this debate is whether firms should
share information to benefit social welfare, or whether they
can sell their information for profit.

However, packaging and pricing information to monetize
it within competitive environments is not a simple task, as
the seller needs to consider not only the buyer’s utility, but
also any externalities, both positive or negative, they may
induce by sharing information with competitor. We model a
competitive market environment as a game of incomplete
information, where the players face a common fundamen-
tal uncertainty associated with a payoff-relevant state of
the world. Each player also observes a private signal that
determines their beliefs about the fundamental uncertainty,
meaning they are also subject to strategic uncertainty with
respect to the signals received by the other players. Play-
ers then simultaneously select an action to maximize their
expected payoffs. We extend this framework by including
an interim step where one player (the seller) observes the
realized state before actions are chosen.

The buyer’s beliefs, and thus their valuation for information,
is unknown to the seller, who designs and offers a menu of
communication rules, which are likelihood functions which
prescribe a distribution over messages the buyer could re-
ceive from the seller conditioned on the realized state. It can
therefore be characterized by a degree of obfuscation of the
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true data. This setup is adapted from those seen in informa-
tion design literature, where a social planner commits to a
communication rule to influence the behavior of players in
a game (Bergemann & Morris, 2019). This is equivalent to
selecting the Bayes correlated equilibrium that maximizes
the planner’s objective (Bergemann & Morris, 2016). In our
case, communication rules have an associated price and the
problem becomes one of joint information and mechanism
design, in which the seller must elicit the buyer’s valuation
for information.

1.1. Contributions

Before discussing related works, we summarize our contri-
butions and outline of the paper:

• In Section 2, we formalize a two-player game of incom-
plete information that we use to model a competitive
market. We adopt a simplified setup where both action
sets and the state of the world are binary, and consider
the case wherein each player has a dominant strategy to
match their action with the state. As such, the buyer’s
private type is one-dimensional and their valuation is
both piecewise linear and independent of the seller’s
action. Since the communication rule purchased in-
fluences the buyer’s decisions, the seller has (anti-)
coordination incentives if their expected payoff (de-
creases) increases with the probability that the buyer
also chooses the correct action. Although we focus on
competitive environments with anti-coordination incen-
tives, we show that our setup extends to the opposite
case which could be viewed as a game with strategic
complements instead of strategic substitutes.

• In Section 3, we outline the aspects that constrain the
menu offered by the seller. Based on the principle that
information is only valuable insofar as it changes the
buyer’s action, the seller’s messages are viewed as ac-
tion recommendations. We establish in Definitions 3.4
and 3.5 that a menu is incentive compatible if the buyer
is best off truthfully reporting their type and obediently
following the recommended action.

• In Section 4, we adapt the Myersonian auction format
to provide novel insights into selling information to a
competitor (see Proposition 4.3). To study the nuances
of this product versioning (or second-degree price dis-
crimination) problem, we first consider just two buyer
types, ranked according to their valuation of the fully
informative communication rule (see Corollary 4.4).
We show that the seller can reduce the information rent
of the less informed type by offering partial informa-
tion depending on the type congruence—whether or
not they would take different actions given their prior
beliefs—, which is consistent with previous findings

(Bergemann et al., 2018). However, unlike this prior
work, we show that competition between the buyer
and the seller induces an externality in the form of a
cost of refining a competitor’s beliefs. This makes the
optimal menu a function of both the intensity of com-
petition and the seller’s own beliefs. For instance, if
types are congruent, such that they would both select
the same action without additional information, and
the seller’s own beliefs are strongly in the opposite di-
rection, the externality exceeds the maximum revenue
and no information is sold. If the seller’s beliefs are in
the same direction, they may choose to sacrifice some
revenue by offering more information to the lower type
to reduce the expected externality.

We show for continuous type spaces that the mecha-
nism design problem reduces to maximizing virtual
surplus (see Corollary 4.7). Our results imply mone-
tary compensation can serve as an effective incentive
for information sharing, with the seller able to package
and price information for profit, even in competitive
environments where it would not otherwise occur or-
ganically. The profitability is, however, sensitive to the
seller’s own beliefs and the intensity of competition,
as well the distribution of buyer types, which gener-
ally occur with non-zero probability both within and
across classes of congruent types. Lastly, as any buyer
could ignore the seller’s message, the seller’s cannot
design a menu that maximizes profit at the expense of
social welfare. This explains why we observe that as
competition grows fiercer it can be optimal to sell no
information at all. Intuitively, the seller wants to mes-
sage the buyer to take the action opposite to their own
beliefs with certainty. However, such messages would
not satisfy Bayesian consistency, meaning that they are
not rational under the prior, and the buyer would not
follow the recommended action. This result suggests
that fiercely competitive environments, where the ex-
ternality cost renders information sales unprofitable,
may require additional incentives.1

• Finally, in Section 5 we gather a set of conclusions and
perspectives for future work.

1.2. Related Works

We now discuss our contributions to the literature on infor-
mation economics covering three key areas: (i) providing
incentives for collaborative analytics; (ii) facilitating infor-
mation sharing in competitive environments; and (iii) selling
information to imperfectly informed decision-makers.

1The code used to run all of our simulations is publicly avail-
able at the following repository: www.github.com/tdfalc/
trading-information
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Collaborative Analytics. For machine learning tasks, raw
datasets are typically acquired directly from their owners via
bilateral transactions (Rasouli & Jordan, 2021). However,
valuing raw data is challenging because it depends on the
information the buyer derives, which is difficult to assess
before they actually use it. In addition, the value of infor-
mation is inherently combinatorial, as datasets invariably
contain correlated signals, which also makes it challeng-
ing to ensure privacy if one’s information can be inferred
from that of others (Acemoglu et al., 2022; Fallah et al.,
2024a;c). Thus, these seemingly straightforward transac-
tions can quickly become intractable to price.

To address this challenge, recent works propose analyt-
ics markets: real-time mechanisms that match datasets to
machine learning tasks based on predictive value, without
transferring raw data. These markets leverage the privacy
benefits of collaborative analytics like federated learning
(Zhang et al., 2021), but add monetary incentives to take
part (Fallah et al., 2024b). First proposed by Agarwal et al.
(2019), analytics markets aggregate features from multiple
sellers. Buyers submit tasks and bids reflecting their val-
uation for improved predictions. The platform determines
how much information is sold and at what price, allocating
market revenue to sellers according to their contributions to
accuracy improvements. Platforms for classification (Kout-
sopoulos et al., 2015) and regression (Pinson et al., 2022)
tasks have been proposed, tackling challenges related to
strategic behavior (Falconer et al., 2025), timing of data
availability (Feng et al., 2021) and financial security of the
sellers (Falconer et al., 2024).

These works challenge the notion that raw data has intrinsic
value, arguing that its usefulness depends on the information
derived. While this view of data valuation is intuitive, it is
typically assumed that buyers truthfully report how much
they value predictive accuracy, an assumption difficult to
sustain in real competitive environments, where sellers may
also have incentives to withhold (Kakhbod et al., 2021) or
distort (Ziv, 1993) information to benefit themselves, even at
the expense of social welfare. By treating the platform as a
monopolistic seller, clearing these markets can be viewed as
a product versioning problem, akin to our setup, where the
seller strategically designs offerings to maximize profit. Our
work thus offers an initial step toward tackling the broader
challenge of pricing information in analytics markets.

Competitive Environments. Early research into incom-
plete information games found that when multiple equilibria
exist without strategic uncertainty, introducing information
asymmetry can eliminate this multiplicity. In other words,
strategic uncertainty can coordinate players towards a par-
ticular equilibrium (Hellwig, 2002). This notion underpins
Bergemann & Morris (2016)’s concept of Bayes correlated
equilibrium, an extension of Aumann (1987)’s complete in-

formation correlated equilibrium to Bayesian games, where
a mediator privately recommends actions to players based
on the realized uncertainties, in a way that players willingly
follow the recommendations. Similar insights have shown
that players can strategically share information with select
others to achieve self-serving outcomes (Dahleh et al., 2016).
This connects to the broader literature on information asym-
metry and market power, surveyed in detail by Bergemann
& Bonatti (2019). In seminal works, Admati & Pfleiderer
(1986; 1990) model a monopolist that sells information to
traders, showing that offering noisy signals tailored to each
maximizes profits by limiting information leakage through
stock prices. Admati & Pfleiderer (1988) build on this by
allowing the seller to also trade in the market, finding that
the value of selling information increases with buyers’ risk
aversion.

Information sharing in incomplete information games, illus-
trated in Figure 1a, has also been explored in game theory lit-
erature; key results are summarized by Raith (1996). Works
such as Novshek & Sonnenschein (1982); Clarke (1983);
Vives (1984); Gal-Or (1985); Shapiro (1986) model strate-
gic uncertainty in oligopolies, considering the nature of both
competition (e.g., strategic complements or substitutes) and
fundamental uncertainties (e.g., costs or capacities). A com-
mon result is that whilst information sharing can improve
production efficiency and social welfare, firms often resist it
without compensation, as it may redistribute market power
and lower individual profits. In our work, we aim to explore
a further dimension: how the intensity of competition, not
just its nature, shapes the value of information sharing.

Selling Data. Our work is most closely related to recent
applications of mechanism design to provide incentives for
information sharing. To maintain tractability, this often re-
quires abstracting both the competitive environment as a
Bayesian game. For example, Babaioff et al. (2012) study a
setting where buyer utility depends on two uncertain states,
with the buyer and seller each privately informed about one.
They characterize the optimal mechanism as conditional on
the seller’s observed state, allowing the seller to exploit cor-
relations between their private information and the buyer’s
type, similar to Crémer & McLean (1988). Giving the seller
flexibility to price and allocate information after observing
the state parallels classical communication problems such
as cheap talk (Crawford & Sobel, 1982), verifiable message
(Milgrom, 1981), and signaling games (Spence, 1978). In
these settings, a mediator, the seller in our case, chooses
what to communicate after observing the state. This leads to
an intractably large decision space as receivers may discount
the message unless their incentives are sufficiently aligned
with the mediator’s.

A simpler approach lends itself to the information design
literature (Bergemann & Morris, 2019), where the mediator
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Firm A Firm B

Market

(a)

Firm A Firm B

Market

(b)

Firm A Firm B

Market

(c)

Figure 1. Existing frameworks for sharing information. The blue, red and green arrows indicate monetary transactions, strategic actions,
and information flows between the firms and the market, respectively. Whilst in each framework, Firm B shares information with Firm A,
the setups differ as follows: in (a) information is shared freely between competitors, in (b) information is purchased yet Firm B is a third
party that doesn’t compete with Firm A, and in (c) information is purchased and both firms compete in the market.

commits ex-ante to a communication rule. This commit-
ment dramatically simplifies the analysis and often yields a
unique solution. Although such commitment may be unreal-
istic in practice, the framework is valuable as a benchmark
for understanding the range of achievable outcomes under
different information structures. This perspective mirrors
that of mechanism design, which also assumes commitment,
such as in auctions, and remains useful as a conceptual tool
even without a literal mediator, as in Myerson & Satterth-
waite (1983)’s analysis of bargaining. If the mediator holds
no informational advantage over the players, information de-
sign collapses to standard communication games (Myerson,
1986). With a single receiver, information design reduces to
Bayesian persuasion (Kamenica & Gentzkow, 2011).

Information design literature typically does not study the
inclusion of monetary transfers. In Bergemann et al. (2018;
2022) this problem is framed as designing an auction, dif-
fering from Babaioff et al. (2012) in requiring the seller to
commit to a mechanism ex-ante. We adopt this framework,
which follows the Bayesian model of decision-making un-
der uncertainty from Blackwell (1951; 1953), where the
buyer purchases a communication rule, or a so-called Black-
well experiment, rather than paying for a message revealed
ex-post by the seller. Unlike standard information design,
which assumes a common prior (Taneva, 2019; Mathevet
et al., 2020) or an omniscient mediator, we study elicitation
of private information and it’s influence on what informa-
tion is sold. Cai & Velegkas (2020) and Ravindranath et al.
(2024) build on Bergemann et al. (2018), focusing on effi-
cient algorithms for approximating optimal menus.

These prior works do not consider externalities. One com-
mon externality arises when a third party sells information
to multiple competing buyers, as illustrated in Figure 1b,
making the value of information to one buyer dependent
on what others receive. Rodrı́guez Olivera (2024) extend
Bergemann et al. (2018) to a multi-buyer setting, where the
optimal menu depends on buyers’ strategic behavior and the
correlation of their private information. Externalities are
also modeled explicitly in Bimpikis et al. (2019), Agarwal
et al. (2024), and Bonatti et al. (2024). The latter studies a
two-player game with binary actions and state space, akin

to a discrete Hotelling competition (Hotelling, 1929), where
firms choose locations without knowing consumer distri-
butions. Here, the seller, informed about the distribution,
exploits asymmetries between firms to design optimal com-
munication rules and shows that limiting the set of buyers
that receive information can maximize profit.

We focus on a related but orthogonal problem of selling
information not to, but amongst competing firms, illustrated
in Figure 1c. Gradwohl & Tennenholtz (2023) study a simi-
lar problem, framed as a variant of Hotelling’s model where
firms compete on price, but only one firm knows consumer
locations. As in Raith (1996), they find that whilst full dis-
closure harms both firms, selling a subset of information
can benefit both. Similarly, Castiglioni et al. (2023) model
the sale of information to a budget-constrained competitor
using information design, characterizing an optimal menu
of communication rules via a polynomial-time linear re-
laxation. However, the buyer holds no private information
about the state, which may not be true in practice.

In our more general setup, the buyer refines their own pri-
vate beliefs, rather than simply updating a common prior,
using information from the seller. This can also be viewed
as a variant of Hotelling’s model, where firms compete on
location and one firm knows the true customer distribution
while the other faces uncertainty. Overall, our contributions
to the literature are threefold: (i) we offer a first step toward
modeling practical analytics markets; (ii) we characterize
incentives for information sharing in competitive environ-
ments as a function of competition intensity; and (iii) we
generalize Bergemann et al. (2018) to incorporate compe-
tition between buyer and seller, adapt the frameworks of
Bimpikis et al. (2019), Agarwal et al. (2024), and Bonatti
et al. (2024) by embedding the seller within the downstream
game, and extend the settings of Gradwohl & Tennenholtz
(2023) and Castiglioni et al. (2023) by allowing buyers to
hold private information about the state.

2. Model
We model two firms competing in a market as an incomplete
information game parameterized by a random variable X
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with range X ⊆ R, where each x ∈ X is a realizable
state of the world. Each player selects an action ai ∈ Ai

and receives ex-post utility ui : A × X 7→ R, for every
i ∈ {b, s}, where subscripts b and s are the indices of the
buyer and seller, respectively, so A = Ab ×As. We restrict
our analysis to binary games, with states X = {0, 1} and
action sets Ai = {0, 1}. Each player’s utility is assumed to
consist of a nonnegative term u+

i which depends only on
their own action, and a nonpositive term u−

i which depends
only on the action of the other player, such that ui(a, x) =
u+
i (ai, x) + u−

i (aj , x). Thus, for every (a, x) pair, we can
subtract a state-dependent constant so that, without loss of
generality, player i seeks to match their action ai to the state
x and ui reduces to

ui(a, x; τ) = 1{ai=x} − τ1{aj=x}, (1)

where 1{·} is the indicator function, returning 1 if the state-
ment {·} is true, and 0 otherwise. The parameter τ ∈ R≥0

encodes the intensity of competition between the two play-
ers, reducing the payoff if the other player also chooses the
correct action.

As X is binary, the common prior is a Bernoulli distribution
parameterized by v ∈ R[0,1], with

p(x; v) = x(1− v) + (1− x)v,

with v the prior probability P (X = 0).2

Private Information. Each player also receives a private
signal si ∈ Si, with si ∼ p(si|x) it’s distribution given the
state. We assume that private information stems from inde-
pendent sources, such that p(sb, ss|x) = p(sb|x)p(ss|x), a
common assumption in analysis of incomplete information
games. Each player uses their private signals together with
the common prior to form updated beliefs via Bayes’ rule.
With a Bernoulli prior, the posterior retains the same form
for any likelihood, so player i’s posterior is

p(x|si; vi) =
p(si|x)p(x; v)∑

x′∈X p(si|x′)p(x′; v)

= x(1− vi) + (1− x)vi,

(2)

with vi ∈ Vi player i’s posterior probability P (X = 0),
where Vi = R[0,1]. Assuming the likelihood is well-
defined and non-zero for at least one x ∈ X , a proper
prior ensures a proper posterior and that the posterior up-
date is a martingale. In other words, the expectation of
the posterior belief, taken over the marginal distribution
of player i’s private signal si, equals the prior belief, that

2For a random variable X , its cumulative distribution function
is F (x) = P (X ≤ x). If X is continuous, it has a density func-
tion p(x), satisfying F (x) =

∫ x

−∞ p(z)dz, and if X is discrete, p
is a mass function and F (x) =

∑
z≤x p(z).

is, Esi∼p(si)[p(x|si; vi)] = p(x; v).3 Hence, the posterior
assigns positive probability only to states that had positive
prior probability, i.e., no state is plausible if it was ruled out
a priori. For further intuition about the role of private infor-
mation, with competition parameterized by τ , we provide
the following example.

Illustrative Example. Consider a variant of Hotelling’s
spatial competition model where, instead of customers being
uniformly distributed along an interval, all are concentrated
at one of two locations, x ∈ {0, 1}. Two competing firms
must choose a location ai ∈ {0, 1} (interpreted as selecting
what or where to produce). Firm i knows the true location
and always chooses ai = x. If X = 1 and firm j chooses
incorrectly, which occurs when vj ≥ 1/2, then firm i cap-
tures the entire market, so ui = 1 and uj = 0. If instead
vj < 1/2, firm j also chooses the correct location, leading
to competition: both firms split the market, with each earn-
ing ui = uj = 1−τ . The parameter τ captures the intensity
of competition; as τ increases, competition reduces profits,
culminating in a zero-sum game at τ = 1. For τ > 1, the
cost of competition outweighs the benefits of choosing the
correct action, creating a prisoners’ dilemma.

Remark 2.1. Even though we treat τ as constant, our setup
readily extends to cases where τ : X 7→ R≥0 is a function
of the state (e.g., differentiated products) or a function of
the other player’s action. One may also consider players to
have coordination incentives, with τ < 0. In this case, each
player would benefit from both themselves and the other
player choosing the action the matches the state.

The Seller’s Problem. We further assume that before the
players choose an action, the seller observes an additional
signal that reveals the true state. The seller can then of-
fer (possibly noisy) messages to the buyer in exchange for
money. In game-theoretic terms, the seller acts as a medi-
ator, sending messages m ∈ M conditioned on the state.4

However, unlike in standard information design, the seller
is not omniscient, as they do not know the buyer’s private
information. This setup naturally leads to an information
design problem with elicitation, as the seller must first elicit
a report from the buyer and then tailor their message. As we
include monetary transfers, we frame this problem as one
of joint information and mechanism design.

From a mechanism design view, a player’s posterior belief
vi ∈ ∆(X ) serves as their type, which can be viewed as a
realization of a random variable Vi. The common prior and

3A discrete-time martingale is a stochastic process (i.e., a se-
quence of random variables indexed by time t), {Xt}t≥1, that
satisfies the following conditions: E[|Xt|] < ∞ for every t ≥ 1;
and E[Xt+1|X1, . . . , Xt] = Xt for every t ≥ 1.

4Its not essential that the seller observes the true state; it suffices
that they can send messages correlated with it.
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the distribution over signals together induce a distribution
over interim beliefs p(vi) ∈ ∆(∆(X )), a distribution over
distributions, determined by the topology of the set of priors,
∆(X ), and the set of distributions over signals, ∆(Si). The
buyer seeks to refine their beliefs by acquiring additional
information from the seller, with their valuation depending
on their private type vb which is unknown to the seller. To
elicit this information, the seller asks the buyer to submit a
bid b ∈ B. Let M denote a discrete random variable with
support M. The seller commits to an ex-ante communica-
tion rule p(m|x; b) ∈ ∆(M), specifying a distribution over
messages conditional on the state x for each possible bid b.
Each communication rule is paired with a price, determined
by a transfer function t : B 7→ R≥0.

Upon receiving message m ∈ M, the buyer again updates
their beliefs via Bayes’ rule, with posterior

p(x|m, sb) =
p(m|x; b)p(x|sb; vb)∑

x′∈X p(m|x′; b)p(x′|sb; vb)
= x(1− θbm) + (1− x)θbm,

which again is a Bernoulli distribution, but now param-
eterized by θbm ∈ Vb, the updated posterior probability
P (X = 0) of the buyer upon receiving message m pro-
vided they bid b.

Timing. Viewing the interaction between the buyer and
the seller as an extensive form game, the timing is:

1. Each player observes their private type vi ∈ R[0,1].

2. The seller offers a menu of communication rules and
the buyer reports bid b ∈ B.

3. State x ∈ {0, 1} is realized and then the buyer receives
message m ∼ p(m|x; b).

4. The buyer updates their beliefs to θbm and pays t(b) to
the seller.

5. Both players choose an action ai ∈ {0, 1} and obtain
ex-post utility ui(a, x).

Equilibrium. The optimal strategy σ : Vi 7→ Ai defines
a mapping from types to actions. Given the utility function
(1) this is simply to pick the action that matches the state
with the largest probability mass, such that

σ(z) = argmax
x∈{0,1}

p(x|si; z) = 1{z< 1
2}
, (3)

for every z ∈ Vi. We use z to denote the type here since the
buyer’s may be their prior vb or θbm after receiving message
m. As σ depends only on each player’s own type, neither

can improve their ex-post utility by unilaterally deviating.
Thus, (3) is a dominant strategy, such that

ui(σ(z), σ(vs), x; τ) ≥ ui(a, x; τ),

for every a ∈ A, z ∈ Vb, and vs ∈ Vs. Of course, as the
seller observes the state, their optimal strategy is σ : X 7→
As, where σ(x) = x. However, this is simply a form of (3)
after updating beliefs to P (x) = 1.

Remark 2.2. From the perspective of information design,
we have a single mediator and a single receiver, and are thus
in a one-player Bayesian Persuasion case as in Kamenica
(2019), and a communication rule reduces to a communica-
tion rule in the sense of Blackwell (1951; 1953).

In summary, the buyer seeks to refine their beliefs by acquir-
ing additional information from the seller. The seller’s goal
is to design a mechanism, a menu of communication rules
and corresponding prices, that maximizes expected profit.
In the following section, we outline the constraints that limit
the space of feasible menus available to the seller.

3. Mechanism Characteristics
To determine the space of feasible menus, we first charac-
terize the buyer’s valuation of a given communication rule,
framed as the gain in expected utility with and without the
additional information from the seller. This characterization
allows us to determine under which conditions the buyer
has an incentive to participate and to truthfully report their
type. The latter incentive is crucial: reasoning over a generic
bid space B is intractable due to the wide range of possible
strategic behaviors, but the revelation principle of Myer-
son (1981) allows us to consider only direct mechanisms
where buyers report types truthfully. Thus, we may assume
B = Vb, provided the mechanism is incentive compatible.
In other words, bid b can be viewed as a realization of a
Vb-measurable random variable, allowing the mechanism to
infer the buyer’s true type vb.

Value of Communication Rules In order to quantify the
value of a communication rule for type vb, we first derive the
buyer’s expected utility using only their private information
as follows:

EX ,Vs [ub(a, x; τ)]

=
∑
x∈X

p(x|sb; vb)
∫
Vs

p(vs)ub(a, x; τ)dvs

=
∑
x∈X

p(x|sb; vb)
(
u+
b (σ(vb), x)

+

∫
Vs

p(vs)u
−
b (σ(vs), x; τ)dvs

)
= EX

[
u+
b (σ(vb), x)

]
+ EX ,Vs

[
u−
b (σ(vs), x; τ)

]
,
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where given the separability of (1), only the nonpositive part
of the utility depends on uncertainty in the seller’s private
information vs. After purchasing a communication rule by
reporting bid b, the buyer’s expected utility conditioned on
message m is given by

EX ,Vs
[ub(a, x; τ)|m] = EX

[
u+
b (σ(θ

b
m), x)|m

]
+ EX ,Vs

[
u−
b (σ(vs), x; τ)

]
,

hence, the expected utility given a particular communication
rule is calculated by integrating over the set of all possible
messages, such that

EM,X ,Vs
[ub(a, x; τ)]

=
∑

m∈M
p(m; b, vb)EX ,Vs

[ub(a, x; τ)|m]

= EM,X
[
u+
b (σ(θ

b
m), x)

]
+ EX ,Vs

[
u−
b (σ(vs), x; τ)

]
,

which, in theory, could be intractable if the message space
M is unbounded. However, we now define a special subset
of communication rules that limits it’s cardinality.
Definition 3.1 (Direct Communication Rule). A communi-
cation rule is direct if every message with positive probabil-
ity leads to a different optimal choice of action.
Proposition 3.2. Every communication rule induced by the
optimal menu can be direct.

Proof. Provided in Appendix A.

A result of Proposition 3.2 is that it suffices for the seller
to only consider direct communication rules where M has
cardinality equal to that of Ab, in our case, |M| = 2. The
proof follows the insight of Blackwell (1951; 1953) that
information is only valuable insofar that it changes the re-
ceiver’s action. If M = {m0,m1}, a communication rule is
two probabilities: P (m0|X = 0; b) and P (m1|X = 1; b),
as illustrated in Table 1.

Table 1. Tabular illustration of a direct binary communication rule.

m0 m1

X = 0 P (m0|X = 0; b) 1− P (m0|X = 0; b)

X = 1 1− P (m1|X = 1; b) P (m1|X = 1; b)

Given the ultimate aim to match ones action with the state, it
is natural to order messages so that m0 and m1 recommend
actions ab = 0 and ab = 1, respectively. This is achieved by
ensuring θbm0

≥ 1− θbm1
, as recall the dominant strategy is

to choose the action corresponding to the state with largest
probability mass. In this case,

P (m0|X = 0; b)b ≥ P (m0|X = 1; b)(1− b), (4)

I
−1 0 1

Reveal X = 1

Obfuscate X = 0

Reveal X = 0

Obfuscate X = 1

Figure 2. One-dimensional informativeness.

and

P (m1|X = 0; b)b ≤ P (m1|X = 1; b)(1− b), (5)

thereby inducing the respective actions.5 Lastly, given the
parametrization in Table 1, any communication rule can be
fully characterized by it’s informativeness, denoted I(b) ∈
R[−1,1], defined as

I(b) = P (m0|X = 0; b)− P (m1|X = 1; b),

which we illustrate in Figure 2. The center, I(b) = 0, is
the fully informative communication rule that invariably
reveals the true state. In each half, one state is revealed with
certainty, and the other gets increasingly obfuscated towards
the boundary. The boundary identifies extreme points where
one message occurs with probability 1, which we later show
is the same as revealing no information to the buyer.

We define the gain δ of communication rule I for a certain
type vb provided they bid b as the difference between the
buyer’s expected utility with and without additional infor-
mation from the seller such that

δ(I(b), vb)

= EM,X
[
u+
b (σ(θ

b
m), x)

]
− EX

[
u+
b (σ(vb), x)

]
,

(6)

which is determined by the quality of the buyer’s private in-
formation. Lastly, we assume that vb provides no additional
information about the distribution of messages conditioned
on the state, i.e., the buyer’s private signal sb ∈ Sb and the
message received from the seller m ∈ M are independent
conditioned on the state, meaning they draw their informa-
tion from independent sources.

In summary, we have reduced the mechanism design prob-
lem to finding a menu consisting of: (i) a single-dimensional
allocation function, namely, the informativeness of the mes-
sages given the bid, I : B → R[−1,1]; and (ii) a transfer
function t : B → R, specifying how much the buyer should
pay for this information.

Feasible Menus. The use of monetary transfers leads to
several key distinctions compared to pure information de-
sign. First, the buyer’s willingness to participate depends
not only on the gain of the purchased communication rule
but also on its price.

5Inequalities (4) and (5) compare unnormalized posteriors, but
since both sides of the inequality share the same denominator, we
need not write it explicitly.
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Definition 3.3 (Individual Rationality). A mechanism is
individually rational if the buyer is guaranteed at least as
much expected utility as not participating, provided they
report their true type, which, for every vb ∈ Vb, implies

δ(I(vb), vb) ≥ t(vb).

The transfers also affect incentive compatibility.

Definition 3.4 (Truthfulness). A mechanism is truthful if,
assuming it is obedient as defined below, for every vb ∈ Vb

and b ∈ B, it holds that

δ(I(vb), vb)− t(vb) ≥ δ(I(b), vb)− t(b).

Each truthfully reported type also has to be willing to follow
the recommended action.

Definition 3.5 (Obedience). A mechanism is obedient if the
buyer’s best response is the seller’s action recommendation,
provided they report their type truthfully, such that for every
ab ∈ Ab and vb ∈ Vb, it holds that

EM,X
[
u+
b (σ(θ

vb
m ), x)

]
≥ EM,X

[
u+
b (ab, x)

]
.

Any obedient mechanism induces a distribution of actions
that is Bayes correlated equilibrium (Bergemann & Morris,
2016). Both truthfulness and obedience together make the
mechanism robust to double-deviations, where the buyer
misreports their private type and deviates from the seller’s
recommendation. Therefore, together these constraints form
incentive compatibility.

Definition 3.6 (Incentive Compatibility). A mechanism is
incentive compatible if

EM,X
[
u+
b (σ(θ

vb
m ), x)

]
− t(vb)

≥ EM,X
[
u+
b (ab, x)

]
− t(b),

for every ab ∈ Ab, vb ∈ Vb and b ∈ B.

Satisfying these individual rationality and incentive compati-
bility constraints limits the space of feasible menus available
to the seller. In the next section, we formulate the seller’s ob-
jective and incorporate these constraints to fully characterize
the optimal mechanism design problem.

4. Profit-Maximizing Mechanism
To derive the seller’s objective, we first return to the value
of a communication rule to simplify the expressions for the
buyer’s gain and the seller’s cost. This allows us to finally
design and analyze the optimal mechanism, first considering
a simpler setting with two buyer types before generalizing
to a continuous type space.

−1.0 −0.5 0.0 0.5 1.0

I0(m)− I1(m)

−1.0

−0.5

0.0

0.5

1.0

I 1
(m

)

(I0, I1)

(I ′0, I
′
1)

Figure 3. Feasible region of I0(b) and I1(b). The ceiling of the
feasible region is highlighted in red.

The Buyer’s Gain. With the dominant strategy in (3), the
expected value of the nonnegative term of the buyer’s utility
function before any information sharing reduces to

EX
[
u+
b (σ(vb), x)

]
= (vb ∨ (1− vb)) , (7)

and similarly, after purchasing a communication rule,

EM,X
[
u+
b (σ(θ

b
m, x)

]
=∑

m∈M
p(m; b, vb)

(
θbm ∨ (1− θbm)

)
.

where a ∨ b = max(a, b). Next, we use these expressions
to simplify the characterization of the informativeness of a
communication rule.

Proposition 4.1. Every communication rule in the optimal
menu will reveal at least one of the states with certainty.

Proof. Provided in Appendix B.

To provide intuition for this proof let I0(b) = P (m0|X =
0; b) and I1(b) = P (m1|X = 1; b) fully define a commu-
nication rule as in Table 1, with I0(b), I1(b) ∈ R[0,1]. By
Proposition 3.2, I0(b) + I1(b) ≥ 1, for which the feasible
region is plotted in Figure 3. It follows that in the optimal
mechanism, all feasible objective values with corresponding
solution (I∗0 , I

∗
1 ) define a level set which contains a solution

(I ′0, I
′
1) on the ceiling of the feasible region, on which either

measure is always 1, revealing the corresponding state with
certainty. It is this line that describes the informativeness
I(b) ∈ R[−1,1] of the communication rule.

Corollary 4.2. From Proposition 4.1, the gain δ of a com-
munication rule I(b) to type vb provided they report b as
described in (6) can be written as

δ(I(b), vb) = 1− (vb ∨ (1− vb))

− I(b)
(
1{I(b)≥0} − vb

)
.

(8)
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0.0 0.2 0.4 0.6 0.8 1.0
vb

0.0

0.2

0.4

δ(
I
,v
b
)

0
2/5
−4/5

Figure 4. Gain as a function and buyer types, as described in (8),
for I = 0 (solid), I = 1/2 (dashed) and I = −1/2 (dotted).

This expression matches that for the buyer’s valuation in
Bergemann et al. (2018), as dominant strategies ensure that
selling information to a competitor only affects u+

b and u−
s ,

the latter of which we later show only appears in the objec-
tive function. To remain self-contained, Figure 4 shows the
gains from several communication rules, illustrating how
the value of information varies with the buyer’s type. Ob-
serve that: (i) the fully informative communication rule is
the most valuable for every type, with δ(I, vb) = 1/2; (ii)
the type with the highest willingness to pay is that which
is least informed (i.e, vb = 1/2) and those with the lowest
willingness to pay are those that are most informed (i.e,
vb ∈ {0, 1}); and (iii) the distance |vb − 1/2| alone is not a
sufficient statistic for the value of information, as asymme-
tries arise based on interim beliefs.

These observations imply that these information commodi-
ties are inherently two-dimensional, comprising both quality
and value; accuracy is only valuable so long as it changes
the buyer’s action. This distinction has been well studied in
the field of predictive analytics, including in meteorological
forecasting (Murphy, 1993). It implies that a direct commu-
nication rule yields a nonnegative gain: the message either
(i) changes the buyer’s best response, leading to a weak util-
ity increase; or (ii) leaves the action unchanged, resulting in
zero value. Hereafter, we consider only truthful mechanisms
with b = vb. We hence obtain: −1 ≤ I(vb) ≤ vb/(1− vb)
if vb ≤ 1/2 and −(1 − vb)/vb ≤ I(vb) ≤ 1 if vb > 1/2.
Hence, communication rules I(vb) ∈ {−1, 1} indeed reveal
no information, as the types able to receive these would
already take the recommended action without additional
information.

The Seller’s Cost. For a given communication rule, the
seller’s cost is the expected externality incurred when the

buyer chooses the correct action, which can be written as:

c(I(vb); τ)

= ER,X
[
u−
s (σ(θ

vb
r ), x; τ)

]
= τvs + τ(1− 2vs)(1− vs)

− τ(1− 2vs)I(vb)
(
vs + 1{I(vb)≥0}

)
,

(9)

for which a full derivation is provided in Appendix C.3.

Mechanism Design. The objective of the mechanism is
to maximize the seller’s expected profit, i.e., the expected
revenue from the transfer minus the expected cost, with the
expectation taken over the type space of the buyer.

Proposition 4.3 (Optimal Mechanism). The optimal mecha-
nism maximizes the seller’s profit subject to individual ratio-
nality and incentive compatibility, which can be expressed
as the following mathematical program:

max
I,t

EVb
[t(vb)− c(I(vb); τ)] (10a)

s.t. I(vb) ∈ R[−1,1], t(vb) ∈ R≥0 (10b)
δ(I(vb), vb)− t(vb) ≥ 0 (10c)
δ(I(vb), vb)− t(vb) ≥ δ(I(b), vb)− t(b) (10d)

where (10a) is the expected profit, (10b) encodes the bounds
on the allocations and transfers, and (10c) and (10d) encode
individual rationality and incentive compatibility, respec-
tively. Each constraint is defined for every vb ∈ Vb, as well
as every b ∈ B for the incentive constraint (10d).

We note that, it is the inclusion of the cost described in (9)
in the objective that generalizes existing works by allowing
us to model the purchase of information from a competitor
as opposed to a third party. In the following, we solve this
problem for binary types to build intuition into the optimal
menu, then generalize to continuous type spaces.

4.1. Binary Type Space

Suppose Vb = {vlb, vhb }, with the high type vhb assigning a
higher valuation to the fully informative communication rule
than the low type, such that δ(0, vhb ) > δ(0, vlb). Without
additional information, each type chooses the action that
matches the state with the highest prior probability, meaning
in this case the high type places lower prior probability on
the state they deem most likely. In other words, the high
type has lower precision (i.e., is less well informed), where
we define the precision of a type as it’s distance from 1/2,
such that |vhb −1/2| < |vlb−1/2|. We denote the probability
of the high type as ϕ = P (vhb ).

Corollary 4.4. From Proposition 4.3, with binary types the

9



Selling Information in Games with Externalities

vb

0 1/2 12/3 5/6

vhb vlb

Figure 5. A congruent binary type distribution. Without additional
information, both types will take the same action, that is, σ(vlb) =
σ(vhb ) = 0.

the mechanism design problem in (10) reduces to:

max
Ik,tk

ϕ(th − ch) + (1− ϕ)(tl − cl) (11a)

s.t. Ik ∈ R[−1,1], t
k ∈ R≥0 (11b)

δ(Ik, vkb )− tk ≥ 0 (11c)

δ(Ik, vkb )− tk ≥ δ(Ik
′
, vkb )− tk

′
(11d)

where Ik = I(vkb ), t
k = t(vkb ) and ck = c(Ik) denote the

allocation, transfer and externality cost for type k ∈ {l, h},
respectively, and the objective in (11a) denotes the expected
profit. Constraints (11d) and (11c) are the incentive and
individual rationality constraints, respectively. Constraints
are defined for every k ∈ {l, h}, as well as every k′ ∈ {l, h}
where k ̸= k′ for the incentive constraint (11d).

We now distinguish between congruent and noncongruent
types; two types are congruent if they would select the same
action without additional information.

Congruent Types. Hereafter, we will assume that the high
type selects σ(vhb ) = 0 based on their prior information (i.e.,
vhb > 1/2). However, our results can be easily adapted to the
opposite case. The types are congruent if 1/2 < vhb < vlb,
as illustrated in Figure 5. In this setting, by Proposition 4.1,
so as to not reduce the information of the buyer relative to
not participating, it is necessary that I l, Ih ≥ 0, meaning
that the state X = 0 must be revealed with certainty. More-
over, as is typical in monopolistic screening problems, both
the individual rationality constraint for vlb and the incentive
compatibility constraint for vhb bind. Under these condi-
tions, the problem in (11) simplifies to the following linear
program:

max
Il,Ih

ϕ(th − ch) + (1− ϕ)(tl − cl)

s.t. 0 ≤ I l ≤ 1

0 ≤ Ih ≤ 1,

with tl = (1− I l)(1− vlb) and th = (1− vhb )(I
l − Ih)+ tl.

This problem can be solved analytically, revealing that it
is optimal for the seller to either allocate all information
or none at all, such that both I l, Ih ∈ {0, 1}. The optimal
menu depends on the distribution of buyer types, as well as

the magnitude of competition encoded by τ and the seller’s
own beliefs vs.

The linear program yields two decision boundaries, τ l and
τh, that determine the sign of the allocation as a function of
competition intensity for the low and high type, given by

τ l =
(1− vlb)− ϕ(1− vhb )

(1− ϕ)(vs − 1)(2vs − 1)
,

and

τh =
1− vhb

(vs − 1)(2vs − 1)
,

with τ l < τh, which we plot in Figure 6 for vlb = 5/6 and
vhb = 2/3.

If the seller’s beliefs are opposite to the buyer’s (i.e., vs ≤
1/2), the solution is I l = 1{τ>τ l} and Ih = 1{τ>τh}. The
seller believes the buyer would choose the wrong action
without additional information. Therefore, irrespective of ϕ,
there is a point at which vs is so far in the opposite direction
of vb, that if τ is sufficiently high, both I l = 1 and I l = 1.
Here, τ > τh and the expected cost of revealing the state
deemed most likely by the seller is too much relative to the
expected transfer such that no information is sold at all, even
to vhb . Information is only sold to vlb when the increase in
expected transfer outweighs the increase in cost such that
τ < τ l. This happens when the intensity of competition τ is
sufficiently low (Figure 6a) or probability of the high type
ϕ is sufficiently high (Figure 6c).

If vs > 1/2, the seller reveals the state to vhb irrespective of
τ as their beliefs are now in agreement. Ideally, the seller
would minimize costs by obfuscating only X = 0 (i.e, set
Ih < 0) to force the buyer to pick the wrong action at the
expense of social welfare, however this would violate the
obedience constraint as the buyer’s gain would be negative
by following this message. Information is only sold to vlb
when τ > τ l. As the probability of the high type increases,
ϕ → 1, the area enclosed by the solid black line in Figure 6c
shrinks, and no information is sold to the low type. This
ensures incentive compatibility by preventing the high type
from mimicking the low type.

Noncongruent Types. The two types are noncongruent
if vlb < 1/2 < vhb , as illustrated in Figure 7. As the low
type would instead select σ(vlb) = 1 without additional in-
formation, I l ≤ 0 to ensure individual rationality. Without
competition, revenue is maximized by offering full informa-
tion to the high type and partial information to the low type,
where the quality of this partial information is prescribed as
that which makes the incentive compatibility constraint of
the high type bind. However, this does not hold generally,
and in our case, depending on the intensity of competition

10
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0.0 0.5 1.0
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0.0

0.5

1.0
τ

vhb vlb

(a) ϕ = 1/3

0.0 0.5 1.0
vs

0.0

0.5

1.0

τ

vhb vlb

(b) ϕ = 1/2

0.0 0.5 1.0
vs

0.0

0.5

1.0

τ

vhb vlb

(c) ϕ = 2/3

Figure 6. Decision boundaries τh (dashed) and τ l (solid) for congruent types.

vb

0 1/2 12/31/6

vhbvlb

Figure 7. A noncongruent binary type distribution. Without addi-
tional information, types take different actions, that is, σ(vlb) = 1
and σ(vhb ) = 0.

τ , the seller may offer less information to both types. There-
fore, for noncongruent types, the problem in (11) reduces to
the following linear program:

max
Il,Ih

ϕ(th − ch) + (1− ϕ)(tl − cl)

s.t. I l ≤ I l ≤ 0

0 ≤ Ih ≤ 1,

with tl = vlb(1 + I l), th = (1 − vhb )(1 − Ih) and I l =
(2vhb − 1)/(vhb − vlb)− 1. This problem can also be solved
analytically, revealing that I l = I l(1− 1{τ>τ l}) and Ih =
1{τ>τh} where

τ l =
vlb

vs(2vs − 1)
,

and

τh =
1− vhs

(1− vs)(1− 2vs)
,

which we plot in Figure 8 for vlb = 1/6 and vhb = 2/3.

If vs < 1/2, there exists a point where vs diverges suffi-
ciently from vhb and τ > τh, so no information being sold
to the high type. However, the seller may still offer partial
information to the low type if it remains profitable without

0.0 0.5 1.0
vs

0.0

0.5

1.0

τ

vhbvlb

Figure 8. Decision boundaries τh (dashed) and τ l (solid) for non-
congruent types.

violating incentive constraints. The information offered to
vlb depends on the relative precision (i.e., distance from 1/2)
of the types. As the low type’s prior becomes less informa-
tive, approaching that of vhb , they receive more information
due to their increased willingness to pay.

If vs > 1/2, the high type receives full information, whilst
the low type only if τ < τ l. For both types, the boundary
τ beyond which no information is provided decreases with
precision, as precise types derive less value from additional
information, so their willingness to pay no longer exceed
the cost of providing the information.

4.2. Continuous Type Space

We now generalize to a type space that is continuous on the
unit interval, such that the distribution F (vb) has support on
Vb = R[0,1] with density p(vb). To obtain analytical insights,
we begin with a key result from prior work, which extends

11
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Myerson (1981)’s finding that incentive compatibility and
individual rationality can be summarized by simpler, more
compact constraints on the allocation I(vb) with transfers
t(vb) pinned down by the utility of the lowest type. We then
generalize this work by incorporating the seller’s expected
cost into the objective and derive closed-form results.

Proposition 4.5 (Bergemann et al., 2018). Individual ratio-
nality and incentive compatibility hold as long as I(vb) is
non-decreasing and

∫
Vb

I(vb)dvb = 0.

Proof. Provided in Appendix C (Sections C.1 and C.2).

Corollary 4.6. From Proposition 4.5, the transfer function
can be derived using Milgrom & Segal (2002)’s envelope
theorem to be:

t(vb) = I(vb)
(
vb − 1{I(vb)≥0}

)
−
∫ vb

0

I(z)dz. (12)

Following Myerson (1981), we can use integration by parts
to eliminate the integral in (12) when computing EVb

[t(vb)].
Then, using the expression for the expected cost described
in (9), we re-write the problem in (10) as follows.

Corollary 4.7. From Proposition 4.5, the mechanism design
problem in (10) reduces to:

max
I

EVb
[J(I, vb)] (13a)

s.t.
∫
I
I(vb)dvb = 0 (13b)

d

dvb
I(vb) ≥ 0 (13c)

where (13c) encodes the monotonicity constraint and

J(I, vb) = I(vb)
(
vb +

F (vs)

p(vs)
+ τvs(1− 2vs)

+ 1{I(vb)≥0}
(
τ(1− 2vs)

2 − 1
) )

.

(14)

This formulation bears similarities to Myerson (1981)’s
single item auction, where the problem is reduced to virtual
surplus maximization subject to monotonic allocations. The
virtual value function is defined as the partial derivative of
the integrand in (14) with respect to I , given by

π(I, vb) =
∂

∂I
J(I, vb)

= π+(vb) + 1{I(vb)≤0}
(
π−(vb)− π+(vb)

)
,

where

π−(vb) = p(vb) (τvs(1− 2vs) + vb) + F (vb),

and

π+(vb) = p(vb) (τ(1− vs)(1− 2vs) + vb − 1) + F (vb),

where the negative π− and positive π+ parts represent the
marginal benefit to the seller in terms of profit, albeit ignor-
ing the constraint (13b), of increasing the allocation of each
type from −1 to 0 and from 0 to 1, respectively. Hereafter,
we assume the virtual value function is non-decreasing in
vb, which places a regularity condition on the type distribu-
tion. This is a common assumption as it holds for several
familiar distributions, including the uniform, exponential,
and Gaussian distributions.

Irregularity. This regularity assumption excludes cases
where most buyers are well-informed ex-ante (i.e., with
types clustered near 0 or 1), resulting in a bimodal density
that violates regularity, inducing virtual values that require
ironing. Ironing, introduced by Myerson (1981), treats ir-
regular distributions by smoothing non-monotonic intervals.
Myerson’s method transforms the virtual values π into a
non-decreasing ironed version π̄, ensuring that allocations
are monotonic by design, as is the case for regular distribu-
tions. However, unlike in the classic model of monopolistic
screening, the virtual values here are a function of I , rather
than being constant in this decision variable, and so this
method cannot be readily applied. One could adopt a simi-
lar method to Toikka (2011), which extends that of Myerson
such that in our case

π̄(I, vb) =
d

dvb
conv

(∫ vb

0

π(z, I)dz

)
(vb),

where∫ vb

0

π(z,I)dz = F (vb)
(
τvs(1− 2vs)

− 1{I(vb)≤0} (2τvs(1− 2vs) + 1) + vb

)
,

however this requires the virtual surplus to be weakly con-
cave in I , which we shall show later does not always hold
in our case.6 Therefore, we leave a thorough extension of
our model to irregular type distributions to future work.

Solution. With the regularity condition in place, we deal
with the equality constraint (13b) using standard Lagrange
methods, such that the Lagrangian function is given by

L(I, λ) =

∫
Vb

(J(I, z)− λz) dz.

As I(vb) is non-decreasing in vb, J(I, vb) is piecewise linear
in I , and the integrals in (13) are linear functionals, strong
duality holds thus λ∗ = argminλ maxI L(I, λ) and hence
we find I∗ by maximizing L(I, λ∗). By applying the results

6The operator conv(·) denotes the convex envelope. The con-
vex envelope conv(g) of a function g : Rn 7→ R is the largest
convex underestimator of g whose epigraph is the convex hull of
the epigraph of g, that is, epi(conv(g)) = conv(epi(g)).
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Figure 9. Virtual surplus with vb = 2/5 for varying levels of competition.

of Myerson (1981), we can instead maximize virtual surplus
pointwise, so the menu is optimal if there exists λ∗ with

I∗(vb) = argmax
I∈I

I(vb) (π(I, vb)− λ∗) . (15)

Proposition 4.8. For regular type distributions, the solution
to the mechanism design problem in (13) is such that the
optimal menu comprises no partially informative communi-
cation rules, with I∗(vb) ∈ {−1, 0, 1}.

Proof. Provided in Appendix D.

Corollary 4.9. Let τ ′ = (1−2vs)
−2, then provided τ < τ ′,

from Proposition 4.8, it holds that

λ∗ =
π−(1/2) + π+(1/2)

2
,

and the primal solution to (15) is given by

I∗(vb) =


−1 if π−(vb) < λ∗,

0 if π−(vb) > λ∗ > π+(vb),

1 if π+(vb) > λ∗,

yet, if τ ≥ τ ′, then λ∗ = π+(1/2) and the primal solution
reduces to

I∗(vb) =

{
−1 if vb ≤ 1/2,

1 otherwise,

meaning it is optimal for the seller to reveal no information
at all.

To gain some insight into these results, suppose the buyer’s
types follow a uniform distribution. In this case, F (vb) = vb
and p(vb) = 1 for every vb ∈ R[0,1], and the virtual values
are given by

π−(vb) = 2vb + τvs(1− 2vs),

and

π+(vb) = 2vb + τ(1− vs)(1− 2vs)− 1.

Insights. In Figure 9, we plot the objective value without
the integral constraint (i.e., the virtual surplus) for varying
levels of competition, with vb = 2/5. Irrespective of τ , the
virtual surplus is piecewise linear in I . When vs = 1/2, it is
completely unaffected by τ . This is because the seller places
equal probability on either state, so the expected externality
is equal whether or not the buyer changes actions. Note that,
this would not be the case if τ was a function of the state,
as the expected cost could again be asymmetric.

If vs ≤ 1/2, both σ(vb) = 1 and σ(vs) = 1, so the buyer
takes the same action as the seller, without additional infor-
mation. In this case, when τ is low, the buyer can charge
enough for it to be profitable to reveal the state. As competi-
tion intensifies, the seller wants to make the buyer choose
the wrong action by obfuscating X = 1 and revealing only
X = 0, so the offering changes to I∗(vb) = 1. However,
this would violate individual rationality so would not be
possible with the integral constraint in place.

If vs ≥ 1/2, we have σ(vs) = 0, so the buyer would choose
the opposite action to the seller. In this case, as τ increases,
the benefit of revealing the state becomes outweighed by the
cost incurred when the buyer switches actions to the state
they deem more likely, and eventually no information is
sold. More generally, the threshold τ ′ is such that for every
τ < τ ′, the objective is concave, and the primal solution
occurs at the kinks, I∗(vb) ∈ {−1, 0, 1}, yet for τ ≥ τ ′, the
objective is convex and the primal solution instead occurs
at the endpoints, I∗(vb) ∈ {−1, 1}. It is at this point when
no transfer can be charged that justifies the externality cost
of revealing the state.

In Figure 10, we plot the resulting primal solutions and the
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Figure 10. Both negative (solid) and positive (dashed) virtual values, with vs = 4/5, for varying levels of competition. The primal solution,
I∗(vb), is indicated by the blue vertical lines, with only types within the enclosed interval offered the fully informative communication
rule. The dual solution, λ∗, which identifies the threshold points, is highlighted in red.
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Figure 11. Expected profit from either strategic versioning (solid),
offering full information to all types (dashed) or sharing no infor-
mation at all (dashdot)

virtual values after re-introducing the integral constraint. To
satisfy constraint (13b), the dual variable λ∗ must assign
two threshold types that separate those receiving full infor-
mation, I(vb) = 0, from those receiving no information at
all, I(vb) ∈ {−1, 1}. Partial information, I(vb) ∈ (−1, 1),
is only offered to types where π(I, vb) = λ∗. However, if
the virtual value function is strictly increasing, which holds
for all regular type distributions, then these thresholds are
crossed exactly once, in other words, the virtual values have
measure zero at these points. Thus, partial information is
never offered and the optimal menu is a step function. For
instance when τ = 0, the fully informative communication
rule is offered if 1/4 ≤ vb ≤ 3/4 at a price t(vb) = 1/4. In
this case, the results align with the setup of Bergemann et al.
(2018), where the seller is not part of the game. The intu-
ition is that it effectively corresponds to a setting with there

is no cost associated with the buyer’s actions. Nevertheless,
even in this case, Corollary 4.9 extends these prior results
by providing an analytical solution for λ∗.

Since the objective is concave when τ < τ ′, by inspection
we see that I(vb) = 1 is preferable to I(vb) = −1 only
if π+(vb) − λ > λ − π−(vb), so the two threshold types
are specified by the unique λ∗ that satisfies this inequality
with equality. Moreover, as the integral in constraint (13b)
has uniform intervals, the set of types where I(vb) = −1
is forced have the same measure as the set where I(vb) =
1, which on the unit interval is measure 1/2, so the dual
variable is ultimately pinned down by the equality constraint
π+(1/2) − λ∗ = λ∗ − π−(1/2). As τ increases, the set
of types offered the fully informative communication rule
becomes narrower, raising the price of information as the
seller extracts more revenue from fewer types to maximize
revenue whilst minimizing the externality cost.

When τ = τ ′, the virtual value functions collapse onto one
another, and beyond this point the objective is convex. As
the seller cannot mislead the buyer to taking the wrong ac-
tion with sufficient probability without violating individual
rationality, they can do no better offering no information.
The primal solution therefore always occurs at the endpoints,
so in order to satisfy the constraint (13b), exactly half of the
types are offered I(vb) = −1 and the other half I(vb) = 1.
Therefore, λ∗ now only prescribes a single threshold type,
where I(vb) = 1 if π+(vb) > λ, else I(vb) = −1, implying
a threshold of vb = 1/2 and dual solution λ∗ = π+(1/2).

To round off our analyses, in Figure 11 we plot the expected
profit obtained via (i) strategic versioning using our mech-
anism design approach; (ii) offering the fully informative
communication rule to all types (i.e., that which would be
obtained with altruistic information sharing); and (iii) shar-
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ing no information at all. One can see that the seller is
always better off sharing no information than revealing it all
for free, due to the anti-coordination incentives in our setup.
By strategically screening buyer types, our market mecha-
nism provides incentives for information sharing since for
low levels of competition, the profit earned is strictly posi-
tive. For moderate τ , selling information to some buyers is
still better than not sharing at all. However, as competition
intensifies, less and less information is sold, until eventually,
none at all.

5. Conclusions
This paper examines a setting in which a monopolist sells
supplemental information to a privately informed buyer. As
with previous work, both the design and price of informa-
tion are shaped by the buyer’s prior beliefs. We extend this
framework to account for the seller’s own private informa-
tion, the potential for the buyer and seller to be competitors
in a downstream market, and the intensity of competition
therein. Without product versioning, the seller is better off
sharing no information than altruistically revealing the true
state, and vice versa for the buyer—an outcome consistent
with the efficient market hypothesis, as freely disclosing in-
formation would erode the seller’s information rent. Hence,
we show that with our mechanism design the seller can
screen buyer types to maximize profit in a way that benefits
both parties. That said, in fiercely competitive environments,
the seller may still be better off not sharing as the externality
cost outweighs the cost of doing so, since the transfers are
ultimately pinned down by the demand for information and
obedience constraints restrict the seller’s ability to steer the
buyer’s actions at the expense of social welfare. In this case,
regulatory measures or other market interventions may be
required to incentivize sharing.

In this work, we characterized the profit-maximizing mech-
anism within a linear model with binary states and actions,
hence much work remains to make this framework useful in
practice. A natural next step is to extend our model to richer
settings, with more than two firms, as well as multiple, or
continuous, states and actions. Further, in many real-world
markets, information induces nonlinear externalities that
depend on all player’s actions, leading to Bayesian Nash
equilibria rather than dominant strategies. With multiple
firms, one can model the complex network of externalities
amongst buyer’s and seller’s alike, possibly represented by a
weighted directed graph. Analyzing such environments may
require computational approaches to characterize the opti-
mal mechanism, leveraging recent advancements in learning-
based methods for automated mechanism design.

On a broader note, whilst our results offer first pass insights
into the sale of information to a competitor, our information
design-based setup has its limitations. First, the seller is as-

sumed to be risk-neutral, yet in practice sellers would have
different risk appetites, so incorporating risk measures (e.g.,
value at risk, expected shortfall, etc.) in the objective should
be explored. Whilst economic literature often assumes per-
fect knowledge of the buyer’s type distribution, this is rarely
the case in practice, so future work could explore the impact
of distributionally robust mechanism design or methods for
learning the distribution on the design and price of informa-
tion.

On the topic of learning, we focus only on static mecha-
nisms, however in dynamic settings the seller could extract
more surplus by correlating payments with realized states.
Also in our setup, buyers are distinguished solely by differ-
ences in their beliefs. Yet, in real-world scenarios, they may
exhibit heterogeneity along multiple dimensions, including
their capacity for processing information, or their preference
for timely access to information. Lastly, since the realized
state is non-contractible, the seller cannot use scoring rules
to price information, which raises the question of how much
profit could be earned if this were the case.

A. Proof of Proposition 3.2
Suppose that the set of messages the seller can send to the
buyer was M = ∪Ab

Mab , where Mab is the subset of
messages that incite type vb to choose action ab ∈ Ab. Fur-
ther, consider an alternative message space R = ∪Ab

{rab},
such that |R| = |Ab|, and each message rab inciting type
vb to choose a different action.

In summary, for each action, set M contains many messages
that incite that action, whilst set R contains only one.

Lemma A.1. The distributions over M and R are such
that p(rab |x; vb) is a garbling of p(mab |x; vb).

Proof. If p(rab |x; vb) is a garbling of p(mab |x; vb), there
must exist a function g : R×Mab 7→ R[0,1] such that

p(rab |x; vb) =
∑

mab∈Mab

g(rab ,mab)p(mab |x; vb),

for every ab ∈ Ab, which in our case holds by design simply
for g(rab ,mab) = 1, for every mab ∈ Mab .

With Lemma A.1, message rab conditioned on the state has
equal probability mass to the sum of all those in Mab , so
the joint distribution of states and actions are the same, so
vb is indifferent between these two communication rules. In
addition, garbling can be viewed as a way of adding noise
to a communication rule, so is weakly less informative for
all types. Hence, by Blackwell’s theorem we get that

ER,X
[
u+
b (σ(θ

b
r), x)

]
≤ EM,X

[
u+
b (σ(θ

b
m), x)

]
,
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for every b ∈ B, which means that every other reported type
weakly prefers p(m|x; b) over p(r|x; b), whilst the true type
is indifferent (Blackwell, 1951; 1953).

In brief, considering only direct communication rules with
M = Ab, the value will be unchanged for vb, and the value
will only be reduced for b ̸= vb, so incentive compatibility
and individual rationality are preserved.

B. Proof of Proposition 4.1
We use the following result from convex analysis:

Lemma B.1 (Boyd, 2004). Let g : Rn 7→ R be an affine
function and let S be a (nonempty) convex polytope. Then
for every z ∈ int(S) there exists a point z′ on the boundary
∂S of S with p(z) = p(z′).

Proof. If g is constant on S the claim is trivial, so assume
that g is nonconstant. Then, for every z ∈ int(S), the level
set L = {z′ ∈ Rn : g(z′) = g(z)} is the intersection of S
with an affine hyperplane. As S is compact and convex, L
is nonempty, intersecting ∂S at some point z′.

Let I0 = P (m0|X = 0) and I1 = P (m1|X = 1) be a
direct communication rule as in Table 1, with I0, I1 ∈ R[0,1]

and I0 + I1 ≥ 1. Recall I = I0 − I1, so we can write the
feasible region as S = {(I0, I) ∈ R2 : 0 ≤ I0 ≤ 1, −1 ≤
I ≤ 1, I ≥ 1 − 2I0, I0 + I ≤ 1} which defines a convex
polytope. As the seller’s objective is linear in these variables,
by Lemma B.1, there exists a level set L whose intersection
with S is nonempty. Therefore L∪ S is a line segment with
endpoints on ∂S.

Let ∂̄S = {(I0, I) ∈ S : I0 = h(I)} be the ceiling of S,
with h(I) = 1 if I ≤ 0, otherwise h(I) = 1− I , as shown
in Figure 3. We claim any line L which intersects ∂S must
intersect ∂̄S . If L∪ ∂̄S = ∅, then L∪∂S would lie entirely
in the region where I0 < h(I). However, by the geometry
of S, any line traversing the boundary ∂S must eventually
cross h(I), thus L ∪ ∂̄S ≠ ∅. Any feasible objective value
has an equivalent solution on the ceiling, so communication
rules can be defined by this line.

B.1. Proof of Corollary 4.2

If type vb reports bid b, the expected value of the nonnegative
utility term given message m is received can be written as
follows:

EX
[
u+
b (σ(θ

b
m), x)|m

]
=
∑
x∈X

p(x|m, sb; θ
b
m)u+

b (σ(θ
b
m), x)

= θbm1{θb
m≥1/2} + (1− θbm)1{θb

m<1/2}

=
(
θbm ∨ (1− θbm)

)
,

and so by integrating over the message space, the expected
nonnegative utility term is given by

EM,X
[
u+
b (σ(θ

b
m), x)

]
= EM

[
EX
[
u+
b (σ(θ

b
m), x)|m

]]
=
∑

m∈M

(
vbP (m|X = 0; b)

∨ (1− vb)P (m|X = 1; b)

)
.

Following Proposition 3.2, let M = {m0,m1}, where m0

and m1 recommend actions ab = 0 and ab = 1. Let I0(b) =
P (m0|X = 0; b) and I1(b) = P (m1|X = 1; b), then with
inequalities (4) and (5), the above expression becomes

EM,X
[
u+
b (σ(θ

b
m), x)

]
= vbI0(b) + (1− vb)I1(b)

= I1(b) + vb (I0(b)− I1(b))

= I1(b) + vbI(b),

and following Proposition 4.1, we get

I1(b) = I0(b)− (I0(b)− I1(b))

= I0(b)− I(b)

= 1− I(b)1{I(b)≥0},

and so by substituting this into the previous expression, the
gain of a communication rule is given by

δ(I(b), vb)

= EM,X
[
u+
b (σ(θ

b
m, x)

]
− EX

[
u+
b (σ(vb), x)

]
= 1− I(b)

(
1{I(b)≥0} − vb

)
− (vb ∨ (1− vb))

see (7)

,

for every vb,m ∈ R[0,1].

C. Proof of Proposition 4.5
In mechanism design, for a social choice function that is
defined over a finite set of alternatives, monotonicity is, in
general, necessary but not sufficient for implementability
(Rochet, 1987). Identifying domains where monotonicity
is sufficient remains an active research area (Ashlagi et al.,
2010). However, Myerson (1981) proved sufficiency when a
seller auctions a single item to buyers with private valuations
and quasilinear utilities. We leverage similarities of this
setup to ours, where I is the item allocation. Our proof is
similar to that of Bergemann et al. (2018) as the demand for
information is independent of the seller’s cost. Nevertheless,
we provide a detailed proof to be self-contained.
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C.1. Necessity

To prove necessity, we start by assuming I is implementable,
in which case truthfulness implies that

δ(I(vb), vb)− t(vb)

≥ δ(I(b), vb)− t(b)

= δ(I(b), b)− t(b) + δ(I(b), vb)− δ(I(b), b),

for every b ∈ B. If we now define ∆(z) = δ(I(z), z)− t(z)
as the rent of type z ∈ Vb for a truthful report, it follows
from (8) that we can re-write this inequality as

∆(vb)−∆(b)

= δ(I(vb), vb)− t(vb)− δ(I(b), b) + t(b)

≥ δ(I(b), vb)− δ(I(b), b)

= (vb − b)I(b)− (vb ∨ (1− vb)) + (b ∨ (1− b)) .

Without loss of generality we can assume that vb ≥ b, as we
can simply swap terms otherwise. Then, for vb < 1/2, this
inequality can be re-written as

I(vb) + 1 ≥ ∆(vb)−∆(b)

vb − b
≥ I(b) + 1

and so I(vb) ≥ I(b) if vb ≥ b, hence monotonicity is a
necessary condition, which can be shown to hold for vb >
1/2 in a similar fashion.

C.2. Sufficiency

Next, to prove sufficiency we need to consider the fact that ∆
is differentiable with respect to vb on [0, 1/2) and (1/2, 1],
so we examine these two intervals separately. Within these
intervals, the value is continuous in vb, so by the envelope
theorem (Milgrom & Segal, 2002), incentive compatibility
imposes, for vb ≤ 1/2

∆(1/2) = ∆(0) +

∫ 1/2

0

d

dvb
δ(I(vb), vb)dvb

= ∆(0) +

∫ 1/2

0

(I(vb) + 1) dvb,

and similarly for vb ≥ 1/2

∆(1/2) = ∆(1)−
∫ 1

1/2

d

dvb
δ(I(vb), vb)dvb

= ∆(1)−
∫ 1

1/2

(I(vb)− 1) dvb,

therefore, as information has no value for types vb ∈ {0, 1},
such that ∆(0) = ∆(1) = 0, the following must hold

vb|1/20 +

∫ 1/2

0

I(vb)dvb = vb|11/2 −
∫ 1

1/2

I(vb)dvb

=⇒
∫ 1

0

I(vb)dvb = 0,

thus constraint (13b) is needed. As ∆(vb) = δ(I(vb), vb)−
t(vb), we can construct the following transfers from the
envelope representation if vb ≤ 1/2,

t(vb) = δ(I(vb), vb)−
∫ vb

0

(I(z) + 1) dz

= I(vb)
(
vb − 1{I(vb)≥0}

)
−
∫ vb

0

I(z)dz,

and similarly if vb ≥ 1/2,

t(vb) = δ(I(vb), vb) +

∫ 1

vb

(I(z)− 1) dz

= I(vb)
(
vb − 1{I(vb)≥0}

)
+

∫ 1

vb

I(z)dz

= I(vb)
(
vb − 1{I(vb)≥0}

)
−
∫ vb

0

I(z)dz,

where the last line is due to (13b). Now we have an expres-
sion the transfers for every vb ∈ Vb, so we write the rent of
type vb from reporting b as follows:

δ(I(b), vb)− t(b)

= 1− I(b)
(
1{I(b)≥0} − vb

)
− (vb ∨ (1− vb))

− I(b)
(
b− 1{I(b)≥0}

)
+

∫ b

0

I(z)dz

= 1− (vb ∨ (1− vb)) + (vb − b)I(b) +

∫ b

0

I(z)dz.

By inspection, if b < vb then the term (vb − b) is positive
and the rent increases as b → vb as I is monotone. On the
other hand, if b > vb, the term (vb − b) is negative so we
want to decrease I , which happens as b → vb. The rent is
thus is maximized at b = vb, hence the incentive constraints
are satisfied. Individual rationality is also satisfied given the
resulting rent is nonnegative for all vb ∈ Vb, hence we have
proved sufficiency.

C.3. Proof of Corollary 4.7

Lastly, we show that the seller’s objective can be reduced to
that in (14). Stated in Section 4, for a given I , the seller’s
cost is the expected externality when the buyer chooses the
correct action, which for a given state x, is:

EX
[
u−
s (σ(θ

b
m),x; τ)|m

]
=
∑
x∈X

p(x|m, ss; vs)u
−
s (σ(θ

b
m), x; τ)

= τvs1{θb
m≥1/2} + τ(1− vs)1{θb

m<1/2}.

Following Proposition 3.2, we know that θbm ≥ 1/2 for m0

and θbm < 1/2 for m1, so by integrating over the message
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space, the expected cost given a communication rule is

c(I(b); τ) = EM,X
[
u−
s (σ(θ

b
m), x; τ)

]
= EM

[
EX
[
u−
s (σ(θ

b
m), x; τ)|m

]]
= τvsP (m0; vs) + τ(1− vs)P (m1; vs)

and given we know that

P (m1; vs) = vsI1(b) + (1− vs)I1(b)

= vs(1− I0(b)) + (1− vs)I1(b)

= vs + I1(b)− vsI(vs)− 2vsI1(b)

= vs − vsI(b) + (1− 2vs)I1(b)

= 1− vs − vsI(b)− (1− 2vs) (I(b) ∨ 0)

the expected cost reduces to

c(I(b); τ) = τvs + τ(1− 2vs)(1− vs)

− τ(1− 2vs)I(b)
(
vs + 1{I(b)≥0}

)
,

such that considering direct mechanisms, the sellers min-
imizes EVb

[c(I(vb); τ)]. Now we turn our attention to the
transfers, with the expected transfer given by

EVb
[t(vb)] =

∫
Vb

t(vb)dF (vb)

=

∫
Vb

(
I(vb)

(
vb − 1{I(vb)≥0}

)
−
∫ vb

0

I(vb)dvb

)
dF (vb),

hence if we let α =
∫ vb
0

I(vb)dvb and dβ = p(vb)dvb, then
the right-most expression reduces to

∫
Vb

(∫ vb

0

I(vb)dvb

)
p(vb)dvb

=

∫
Vb

αdβ

= αβ
∣∣∣1
0
−
∫
Vb

βdα

= F (vb)

∫ vb

0

I(z)dz

∣∣∣∣1
0

−
∫
Vb

F (vb)I(vb)dvb

=

∫
Vb

I(vb)dvb −
∫
Vb

F (vb)I(vb)dvb

=

∫
Vb

I(vb)(1− F (vb))dvb,

which if we substitute back into the original expression gives

EVb
[t(vb)]

=

∫
Vb

(
I(vb)

(
vb − 1{I(vb)≥0}

))
dF (vb)

−
∫
Vb

I(vb)(1− F (vb))dvb

=

∫
Vb

(
I(vb)

(
vb − 1{I(vb)≥0}

))
dF (vb)

−
∫
Vb

I(vb)
1− F (vb)

p(vb)
dF (vb)

=

∫
Vb

(
I(vb)

(
vb − 1{I(vb)≥0}

)
− I(vb)

1− F (vb)

p(vb)

)
dF (vb)

=

∫
Vb

(
I(vb)

(
vb − 1{I(vb)≥0}

)
+ I(vb)

F (vb)

p(vb)

)
dvb

−
∫
Vb

I(vb)dvb

=0by (13b)

=

∫
Vb

(
I(vb)

(
vb − 1{I(vb)≥0} +

F (vb)

p(vb)

))
dF (vb).

Finally, the expected profit is equal to the expected transfer
minus the expected cost, so the objective function in (13) is
given by

EVb
[t(vb)− c(I(vb); τ)] =

∫
Vb

J(I, vb)dF (vb),

where

J(I, vb) = I(vb)
(
vb +

F (vb)

p(vb)
+ τvs(1− 2vs)

+ 1{I(vb)≥0}
(
τ(1− 2vs)

2 − 1
) )

.

D. Proof of Proposition 4.8
By inspection, the solution to the Lagrangian maximization
in (15) is given by

I∗(vb) =



−1 if π−(vb) < λ∗,

z ∈ R[−1,0] if π−(vb) = λ∗,

0 if π−(vb) > λ∗ > π+(vb),

z ∈ R[0,1] if π+(vb) = λ∗,

1 if π+(vb) > λ∗,

such that partial information is only offered when the virtual
values coincide with the dual variable. With the regularity
assumption, the virtual values are strictly increasing, so they
have measure zero at these points. Thus, partial information
is never offered and the optimal menu is a step function,
I∗(vb) ∈ {−1, 0, 1}.
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