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Introduction
Energysystemsareevolving: Greentransition

For example, in Denmark:

Source: Green Power Denmark

• Fossil fuels ! weather-dependent
renewables

• High uncertainty and variability

• Additional operational �exibility needed
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Introduction
Energysystemsareevolving: Growing interdependence

• Operational synergies ! cross-carrier
�exibility

• �exible operation of boundary agents
• network �exibility from short-term storage

• Sequential and separate energy markets !
over-/under-estimation of �exibility

• Market-based coordination is crucial
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Introduction
Researchquestions

1 How to design generic and e�cientmarket mechanisms
and products to harness cross-carrier �exibility?

2 How to model and mitigate uncertainty propagation
among energy systems via market-based coordination?
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Introduction
Towards�exibility-centricelectricitymarkets

• Spatial price equilibrium using linear programming (LP)

• LP is limiting, as nonlinearities common to:
• costs and constraints of market participants
• physical �ow models in networks
• uncertainty modeling approaches

• Heterogeneous �exibility providers with spatio-temporal
coupling constraints
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Objective 1

To develop a general �exibility-centric electricity market framework which
admits nonlinearities in uncertainty, assets, and energy networks.

*Figure inspiration: V. Dvorkin, Stochastic & private energy system optimization, 2021.
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Introduction
Thesiscontributions: Objective1

Objective 1: To develop a general �exibility-centric electricity market framework which
admits nonlinearities in uncertainty, assets, and energy networks.

1 Amulti-period &multi-commodity conic electricity market
• Asset and network nonlinearities as second-order cone (SOC) constraints
• Variety of �exibility services as additional commodities
• Endogenous modeling and pricing of uncertainty

2 Analytical proofs for desired economic properties of competitive markets
• No properties lost in moving from linear towards conicmarkets

3 Optimally-sized policy-based reserves over capacity-based reserves
• Lower operations cost with guarantees against uncertainty realizations
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Introduction
Towardsuncertainty-awareenergysystemcoordination

• Uncertainty in natural gas systems ! price spikes,
network congestion

• Mitigating uncertainty propagation is challenging:
• nonlinearities and non-convexities
• state variables and operational constraints
• market-based incentives

Electricity
system

Natural gas
system

Flexibility

Uncertainty propagation

Objective 2

To develop a methodology to harness cross-carrier �exibility in energy mar-
kets while taking uncertainty propagation into account.
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Introduction
Thesiscontributions: Objective2

Objective 2: To develop a methodology to harness cross-carrier �exibility in energy
markets while taking uncertainty propagation into account.

1 Uncertainty-aware electricity and gas dispatch with linepack �exibility
• Nonlinear and non-convex gas �ow dynamics under uncertainty
• Trade-o�: operations cost vs. robustness to uncertainty propagation

2 Stochastic control policies for natural gas networks
• Analytical description of system state to the uncertainty propagated
• Market-basedminimization of variance of state variables

3 E�cient pricing scheme to remunerate (penalize) agents formitigating
(aggravating) uncertainty and variance
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Introduction
Publications
Flexibility-centric electricity markets:

1 A. Ratha, P. Pinson, H. Le Cadre, A. Virag and J. Kazempour, “Moving from linear to conic
markets for electricity”, submitted to European Journal of Operational Research, (under review,
second round), 2021.

2 A. Ratha, J. Kazempour, A. Virag and P. Pinson, “Exploring market properties of policy-based
reserve procurement for power systems”, in 2019 IEEE 58th Conference on Decision and
Control (CDC), Nice, pp. 7498-7505.

Uncertainty-aware coordination among energy systems:
3 A. Ratha, A. Schwele, J. Kazempour, P. Pinson, S. Shariat Torbaghan and A. Virag, “A�ne policies

for �exibility provision by natural gas networks to power systems”, in Electric Power
Systems Research, Volume 189, Article 106565, December 2020.

4 V. Dvorkin, A. Ratha, P. Pinson and J. Kazempour, “Stochastic control and pricing for natural
gas networks”, in IEEE Transactions on Control of Network Systems, Volume 9, Issue 1, pp.
450-462, March 2022.
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Introduction
Outline

Introduction

Flexibility-centric electricity markets

Uncertainty propagation in energy systems

Conclusions & perspectives
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Flexibility-centric electricitymarkets

Preliminaries

Conic market

A market-clearing problem that admits convex strategy sets of market par-
ticipants involving second-order cones of arbitrary dimensions.

Second-order cone (SOC)

A SOC C of dimension m is a convex set de�ned,
for tuple (u, v), u 2 Rm and v 2 R+ , as

C :=

⇢
u
v

� ���� kuk 6 v
�

✓ R
m+1. u1

v

C ✓ R2
u1

u2

v

C ✓ R3
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Flexibility-centric electricitymarkets

Marketsetting

• Hourly day-aheadmarket cleared over T = 24 hours
• P commodities of two kinds: energy and �exibility services
• Heterogeneous participants, i 2 I

• Participant’s decision vector qit 2 RKi , where Ki > P

qi =

2

6664

qi1
qi2
...

qiT

3

7775
2 RKi T

• Temporally-separable convex quadratic cost function, cit(qit) : RKi 7! R:

cit(qit) = cLit
> qit + qit

> diag(cQit ) qit
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Flexibility-centric electricitymarkets

SOCconstraints

Generic SOC constraint

A generic SOC constraint on variable qi of i-th market participant is

kAi qi + bik 6 d>
i qi + ei

,


Ai
d>

i

�
qi +


bi
ei

�
2 Ci ✓ Rmi+1

.

Parameters Ai 2 Rmi⇥Ki T , bi 2 Rmi , di 2 RKi T and ei 2 R embody the
structural and geometrical information of each constraint.

• Special cases:
• Ai = 0 =) 0 6 d>

i qi + ei (linear inequalities)

• di = 0, ei > 0 =) kAi qi + bik 6 ei (quadratic inequalities)
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Flexibility-centric electricitymarkets

Conicmarketasanoptimizationproblem

min
qi , zi

X

i2I

X

t2T
zit + cLit

>qit

s.t. kCQ
it qitk2  zit , 8t , 8i :(µQ

it , 
Q
it , ⌫

Q
it ) Objective reformulation

kAij qi + bijk 6 d>
ij qi + eij , j 2 Ji , 8i :(µij , ⌫ij) Multiple SOC constraints

Fi qi = hi , 8i :(�i) Equality constraints

X

i2In

Gip qip = 0T , 8p, 8n :(�pn) Supply-demand balance

� s 6
X

n2N
 (:,n)

0

@
X

i2In

X

p2P
[Gip qip]t

1

A 6 s, 8t :(%t , %t) Network �ow constraints
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Flexibility-centric electricitymarkets

Bidstructure

Conic market bids

Participant i located at network node ni submits a bid

• Conic market bids

• generalize the prevalent price-quantity bids
• replace complex block orders, preserving convexity
• enable trades in energy and multiple �exibility services
• admit quadratic costs without linear approximations
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Flexibility-centric electricitymarkets

Spatialpriceequilibriumunderlyingtheconicmarket

centrally-solved
market-clearing optimization

For each participant, i :
max. Revenue - Cost

Network operator’s problem:
max. Congestion rent

Market clearing conditions:
Supply = Demand, 8p 2 P

Net nodal injection = Energy transported, 8n 2 N

()

spatial price equilibrium

• Desired economic properties proven analytically:
1 e�ciency of the market

2 cost recovery of participants

3 revenue adequacy of the market operator
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Flexibility-centric electricitymarkets

UseCase: Uncertainty-awareelectricitymarkets

• Sequential energy and reserve markets ! co-optimization
• Deterministic linear markets withminimum reserve requirements (MRR)
• Stochastic linear markets propose scenarios or uncertainty sets

MRR-based
deterministic markets

Sequential
energy and reserves

Scenario-based
stochastic markets

Robust optimization
-based stochastic markets

Chance-constrained
stochastic markets

MRR-based
deterministic markets

R1

Scenario-based
stochastic markets

R2

Mcc
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Figure 2.3: Allocation of adjustment policies with the various chosen degrees of unbiasedness, �.
Reproduced from [Paper B].
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Figure 2: (a) 24-node electricity network showing a visualization of spatial prices of energy for the network configu-
ration with bottlenecks, (b) expected net demand for the 50% RES paradigm, (c) system-wide prices for energy and
(d) the total hourly flexibility payments for various RES paradigms

Impact of congestion and uncertainty on prices: The density plot in Figure 2(a) visualizes the im-
pact of network bottlenecks on the day-ahead energy prices for hour 23 under the 50% renewable
energy share paradigm. Figures 2(c) and 2(d) show the commodity prices for the network config-
uration without bottlenecks for the various RES paradigms. Observe that with higher shares of
renewable energy, the payment made by the market operator towards flexibility increases, comple-
mentary to the gradual reduction in the energy price due to wind farms bidding with zero prices.
Overall, increasing uncertainty faced at the day-ahead market-clearing stage leads to lower energy
prices while the payments towards flexibility services increase, thereby resulting in the right market
signals for investments in flexibility over the long run. Note that, since the adjustment polices are
quantified in per unit, the hourly flexibility payments shown in Figure 2(d) correspond to total
payments made by the market operator towards flexibility, adopting an allocation determined by
the adjustment policies of individual flexibility providers and as such, following a di�erentiated
pricing scheme. We now discuss the allocation of adjustment policies and provide further insights
into the pricing of flexibility.

Flexibility allocation and payments: For the 50% RES paradigm, Figures 3(a)-3(f) show the optimal
allocation of dispatch and adjustment policies to the PPs (f1, f2, . . . , f12) and to the ESUs
(s1, s2, s3) for selected hours of the day for both network configurations. First, observe that
non-zero adjustment policies are only allocated to flexibility providers that are also dispatched for
the commodity energy, which is consistent with the requirement that both over- and under-supply
imbalances during the real-time operation are mitigated by the flexibility delivered. Second, the
network configuration with bottlenecks mandates the allocation of adjustment policies to more
number of flexible power producers, as network congestion is expected to impact the flexibility
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Figure 2.4: (a) Electricity network visualizing spatial prices of energy for the configuration with
bottlenecks at hour 23 under the 50% RES paradigm, (b) expected net demand for the 50% RES
paradigm, (c) system-wide prices for energy, and (d) the total hourly flexibility payments for
various RES paradigms. Reproduced from [Paper A].
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among the proposed SOCP-based marketMcc and LP-based benchmarks: deterministic market
R1 and scenario-based stochastic marketR2. Reproduced from [Paper A].

Impact of congestion and uncertainty on prices

The density plot in Figure 2.4(a) shows the day-ahead energy price at various network nodes
at hour 23 under the 50% RES paradigm. Figure 2.4(b) shows the day-ahead forecast for the
net demand (energy demand less the wind power forecasts) for the 50% RES paradigm, while
Figures 2.4(c) and 2.4(d) show the prices of energy and payments towards adjustment policies,
respectively. In addition to the di�erence among the hours as discussed in Section 2.3.2, increasing
uncertainty in the day-ahead market leads to lower energy prices coupled with higher payments
towards procurement of flexibility services, thereby sending right market signals towards increased
participation of flexibility providers over the long run. Observe that, since the adjustment policies
are in per unit, the hourly flexibility payments in Figure 2.4(d) are total payments made by the
market operator towards procuring the flexibility service, which is then allocated among the
flexibility providers based on the policy allocated to them. In particular, as exhaustively covered in
[Paper A], the payment follows a di�erentiated pricing scheme depending on a number of factors:
(i) level of uncertainty perceived by the market operator (quantified by forecast error covariance
matrix and day-ahead forecast), (ii) network topology, i.e., location of a flexibility provider w.r.t.
uncertainty sources and network congestions, and (iii) whether other flexibility providers are
available, i.e., how scarce is flexibility at a given hour.

Comparison with LP-based benchmarks: In-sample and out-of-sample costs

To highlight the improvements in social welfare while moving towards the SOCP-based uncertainty-
aware market, it is compared against two uncertainty-aware market-clearing references available
within the LP domain. First reference market, R1 is a deterministic market framework based
on MRR, similar to that considered in [Paper B], while the second reference market R2 solves
a scenario-based stochastic market-clearing problem. Further details on the benchmarks as
well as the parameters considered in these numerical experiments are provided in [Paper A].
Figure 2.5 shows the expected in-sample cost comparison between the proposed SOCP-based
market framework, denoted byMcc and the LP-based benchmarks,R1 andR2. Here, in-sample
refers to evaluating the market-clearing outcomes against an identical set of samples used to
construct the uncertainty model for the chance-constrained program, referring to � = 1 in the
previously-discussed context of [Paper B]. Due to its exogenous consideration of uncertainty,R1

50% renewable energy share
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Figure 2.6: Out-of-sample market-clearing cost comparison for the 50% RES paradigm among
the proposed SOCP-based marketMcc and LP-based benchmarks: deterministic marketR1 and
scenario-based stochastic marketR2. Reproduced from [Paper A].

leads to higher cost (and eventually infeasibility in the case with network bottlenecks for RES share
of 60%) due to over-dimensioning of reserves procured. WhileMcc andR2 lead to comparable
costs, the market outcomes ofR2 do not provide any guarantees on the feasibility of the market
beyond these scenarios considered15.

To further compare the performance of these market frameworks, out-of-sample simulations
are performed by considering 500 uncertainty realizations distinct from those considered in
the reformulation of the chance constraints during the real-time operation stage. While the LP
benchmarks R1 and R2 involve a real-time market allowing adjustments (at a premium) up to
the flexible capacity limits defined in the day-ahead market stage, the SOCP-marketMcc strictly
adheres to the activation of the adjustment policies. To account for potential infeasibility during the
real-time stage, contingency actions, i.e., wind power curtailment and load shedding, are allowed
with a high penalty. Figure 2.6 shows the distribution of out-of-sample costs for the various market
frameworks for the 50% RES paradigm16. The deterministic market frameworkR1 performs poorly
compared to others, as in the in-sample case. Further, the scenario-based market frameworkR2
exhibits a high variability from the expected in-sample cost, and as further discussed in [Paper A],
requires frequent contingency actions as compared toMcc. The numerical results demonstrate
the uncertainty-aware SOCP-based market framework outperforms the LP-based benchmarks in
terms of social welfare and its reduced variability.

2.4 Future perspectives

While the discussion in this chapter focuses primarily on electricity markets, the theoretical results
and methodology developed are of potential interest in competitive settings that involve physical
or non-physical systems, where cost- and constraint-related nonlinearities are currently managed
by adopting approximation techniques via linearization. In particular, within the integrated energy
system context, the flexibility-centric redesign of electricity markets presented in this chapter

15An analytical lower bound on the number of scenarios necessary to provide identical feasibility guarantees forMcc

andR2 is given in [121, Theorem 5]. Based on the parameters and participant characteristics considered in [Paper A], it
corresponds to 80,000 scenarios, therefore imposing serious computational limitations on practical adoption ofR2.

16For each box, the central line indicates the median, the ends indicate the 25th and 75th percentiles, whereas the
whiskers extend up to 1.5 times the interquartile range and rings denote outliers.
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Towardscomputational tractability

Moment-based ambiguity set:

P = {P⇠ 2 P0(RWT ) : EP⇠ [⇠] = µ, EP⇠ [⇠⇠>] = ⌃}

wind
forecast
errors

mean
covariance

Central System Operator
min. E(Total operations cost)

non-gas
generators

gas-�red
generators

gas
suppliers

gas
network

(⌘, ⇣)

↵ ↵ �

1 A�ne control policies as recourse actions:

x̃E
t (⇠) = xE

t + (1>⇠t)↵t , x̃G
t (⇠) = xG

t + (1>⇠t)�t , 8t

%̃t(⇠) = %t + (1>⇠t)⌘t , '̃t(⇠) = 't + (1>⇠t)⇣t , 8t

2 Robust joint chance constraint Bonferroni’s inequality������������! deterministic SOC constraints

3 Convexi�cation of non-convex quadratic gas �ow equations W(%̃t , '̃t) = 0 by:
A Convex relaxations
B Linearization
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Uncertaintypropagation inenergy systems

ApproachA:Usingconvexrelaxations
• Assume �xed directions for gas �ows & lossless pressure regulation

Stochastic quadratic equality:
W(%̃t , '̃t ) = 0

%̃t (⇠) = %t + (1>⇠t )⌘t

'̃t (⇠) = 't + (1>⇠t )⇣t

Zero-order uncertainty coe�cients:
W0(%t ,'t ) = 0

Second-order uncertainty coe�cients:
W2(⌘t , ⇣t ) = 0

First-order uncertainty coe�cients:
W1(%t ,'t ,⌘t , ⇣t ) = 0

SOC relaxation

McCormick envelopes

• Relaxation tightness impacts real-time feasibility
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Uncertaintypropagation inenergy systems

Numerical results: 24-nodeelectricity+12-nodegassystem
• Constraints with identical violation probabilities "̂
• 1000 wind forecast scenarios in DK ! µ &⌃ forming ambiguity set

• Trade-o�: expected operations cost vs. robustness to uncertainty propagation
• Inexact convex relaxations ! real-time �ow reversals & constraint violations
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Figure 3.3: Expected day-ahead dispatch cost (line plot, referring to the left y-axis) and ex-ante
violation probability (bars, referring to the right y-axis) with the reliability criteria set by the central
system operator, (1� �̂). Adapted from [Paper C].

proportion of the ex-ante scenarios that have at least one constraint violated beyond the numerical
tolerance of the optimization solver employed.

For a range of reliability levels, (1� �̂), prescribed by the central system operator, Figure 3.3 shows
the expected cost of day-ahead dispatch (line plot with filled circles as markers, referring to the
left-hand y-axis) and the ex-ante out-of-sample violation probability ��̂ observed (bars, referring
to the right-hand y-axis). The expected cost of dispatch at the day-ahead stage increases with
higher confidence requirement levied by the system operator. Due to the outer approximation
approach adopted for tractability of robust joint chance constraints, the values of ��̂ are observed
to be generally higher than the individual constraint violation probabilities chosen. However, with
a relatively high expected cost, for reliability criteria (1 � �̂) = 0.95, an ex-ante joint constraint
violation probability observed is 0.003, which indicates a better robustness to uncertainty than
modeled. Considering the large number of chance constraints involved in the case study, SOC
approximations based on Chebyshev’s inequality leads to infeasibility for reliability criteria set at
(1� �̂) > 0.95.

Further results discussed in [Paper C] dive deeper into the observed ex-ante violation probability
��̂, studying how they correspond to constraint violations in individual groups of constraints
comprising (3.1b) for various prescribed levels of �̂. In particular, it is observed that the available
linepack flexibility in the natural gas system was not depleted while mitigating the uncertainty
propagated from the electricity. On the other hand, constraints modeling gas flow directions as
fixed by the system operator before solving problem (3.1), as formalized in Assumption 5, are
violated with a high frequency.

Tightness of convex relaxations

Beyond the out-of-sample simulations, the tightness of the convex relaxations adopted for the
original stochastic non-convex gas flow equations (3.7) is studied to characterize the impact of
uncertainty propagation on state variables. For the equalities in (3.8), a normalized root mean
square relaxation gap parameter is computed, accounting for each equality constraint of the form

• Trade-o�: expected operations cost vs. robustness to uncertainty propagation

• Inexact convex relaxations ! real-time �ow reversals & constraint violations
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Uncertaintypropagation inenergy systems

ApproachB:Using linearization
• First-order Taylor series expansion of non-convex gas �ow equation:

1 gas �ow directions not �xed

2 lossy, controllable pressure regulation ̃ by compressors & valves

3 squared pressures, ⇡̃ = %̃2

4 gas injection & pressure regulation control policies: x̃G = xG + (1>⇠)� , ̃ =  + (1>⇠)�

Stochastic quadratic equality:
W(⇡̃t , '̃t , ̃) = 0

Deterministic non-convex
gas dispatch problem

solved at

point forecast

Linearized gas �ow equations:
'̃ = g1 + G2⇡̃ + G3̃

⇡̃r = ⇡̊r

compute Jacobian

sensitivities

State variables uncertainty response model

Uncertainty response of state variables is implicitly a�ne in control inputs, i.e.,

⇡̃(⇠) = ⇡ + Ğ2(� � Ĝ3� � diag[1])
| {z }

⌘

⇠ , '̃(⇠) = ' + (G̀2(� � diag[1]) � G̀3�)
| {z }

⇣

⇠
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| {z }

⌘

⇠ , '̃(⇠) = ' + (G̀2(� � diag[1]) � G̀3�)
| {z }

⇣

⇠

June 1, 2022 DTU Wind & Energy Systems 23 / 27Market Design for Integrated Energy Systems of the Future



Uncertaintypropagation inenergy systems

ApproachB:Using linearization
• First-order Taylor series expansion of non-convex gas �ow equation:

1 gas �ow directions not �xed

2 lossy, controllable pressure regulation ̃ by compressors & valves

3 squared pressures, ⇡̃ = %̃2

4 gas injection & pressure regulation control policies: x̃G = xG + (1>⇠)� , ̃ =  + (1>⇠)�

Stochastic quadratic equality:
W(⇡̃t , '̃t , ̃) = 0

Deterministic non-convex
gas dispatch problem

solved at

point forecast

Linearized gas �ow equations:
'̃ = g1 + G2⇡̃ + G3̃

⇡̃r = ⇡̊r

compute Jacobian

sensitivities

State variables uncertainty response model

Uncertainty response of state variables is implicitly a�ne in control inputs, i.e.,
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1 gas �ow directions not �xed

2 lossy, controllable pressure regulation ̃ by compressors & valves

3 squared pressures, ⇡̃ = %̃2

4 gas injection & pressure regulation control policies: x̃G = xG + (1>⇠)� , ̃ =  + (1>⇠)�

Stochastic quadratic equality:
W(⇡̃t , '̃t , ̃) = 0

Deterministic non-convex
gas dispatch problem

solved at

point forecast

Linearized gas �ow equations:
'̃ = g1 + G2⇡̃ + G3̃

⇡̃r = ⇡̊r

compute Jacobian

sensitivities

State variables uncertainty response model

Uncertainty response of state variables is implicitly a�ne in control inputs, i.e.,

⇡̃(⇠) = ⇡ + Ğ2(� � Ĝ3� � diag[1])
| {z }

⌘

⇠ , '̃(⇠) = ' + (G̀2(� � diag[1]) � G̀3�)
| {z }

⇣

⇠
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Uncertaintypropagation inenergy systems

Analyticaluncertaintyresponse!stochasticgasmarketdesign

• Enforce operational limits on state variables, e.g., nodal pressure upper bound

P⇠ [⇡̃n(⇠) 6 ⇡n] > 1 � " ) r" kX[Ğ2(� � Ĝ3� � diag[1])]>n k
| {z }

pressure standard deviation

6 ⇡n � ⇡n

• Variance penalty on state variables ! mitigates uncertainty propagation, e.g.,
minimize pressure variance:

min
s⇡n

c⇡
n s⇡n s.t. kX[Ğ2(� � Ĝ3� � diag[1])]>n k 6 s⇡n

• Uncertainty- & variance-aware control policies ! stochastic SOCP gas market
• Pricing based on conic duality ! agents havemultiple revenue streams:

1 nominal balance
2 network congestion
3 recourse balance
4 variance regulation
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n s⇡n s.t. kX[Ğ2(� � Ĝ3� � diag[1])]>n k 6 s⇡n

• Uncertainty- & variance-aware control policies ! stochastic SOCP gas market
• Pricing based on conic duality ! agents havemultiple revenue streams:

1 nominal balance
2 network congestion
3 recourse balance
4 variance regulation

June 1, 2022 DTU Wind & Energy Systems 24 / 27Market Design for Integrated Energy Systems of the Future



Uncertaintypropagation inenergy systems

Analyticaluncertaintyresponse!stochasticgasmarketdesign

• Enforce operational limits on state variables, e.g., nodal pressure upper bound

P⇠ [⇡̃n(⇠) 6 ⇡n] > 1 � " ) r" kX[Ğ2(� � Ĝ3� � diag[1])]>n k
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Uncertaintypropagation inenergy systems

Mitigating impactsofuncertaintypropagation

Variance-agnostic control policies
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Figure 3.6: Expected gas injection cost (in $1000) versus pressure variance (in MPa2) for di�erent
assignments of control policies to flexible agents while pressure variance penalty c� � [0.001, 0.1].
Adapted from [Paper D].
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Figure 3.7: Comparison of the variance-agnostic (left) and variance-aware (right) chance-
constrained control policies in terms of variance of the state variables for � = 0.1. The red
values show the probability of flow reversal in the pipelines. The inset plot shows the correlation
between pressures at nodes 34 and 35. Adapted from [Paper D].

Cost-variance trade-o�

The trade-o� between expected cost and variance of state variables is studied by gradually
increasing the penalties on the standard deviations, such that zero values of penalties in (3.24a)
correspond to variance-agnostic chance-constrained gas system optimization. It was observed that
without any substantial impact on expected cost, variance-aware control policies are able to reduce
the variance of pressures and flows by 63.8% and 7.2%, respectively. These reductions in variance
are attained by optimal pressure regulation provided by the active pipelines, with valves becoming
more active as standard deviations of state variables are highly penalized while seeking further
variance reduction. Figure 3.6 analyzes the contributions of various flexible agents in reducing
the variance of nodal pressure in the natural gas system. The various line plots were obtained
by selectively suppressing recourse actions. For instance, the ‘injection only’ case was obtained
by enforcing active pipelines recourse actions � = 0 while the case ‘injection + compressors’ was
obtained by enforcing valve recourse actions to be zero, i.e., [�]�(e,:) = 0, �e � Ev. It is observed
that as the pressure variance penalty increases, rapid reduction in variance is achieved at a lower
cost as the gas system operator deploys pressure regulation to mitigate uncertainty and variance.

The density plots in Figure 3.7 show a comparison of variance-agnostic and variance-aware
formulations of the proposed chance-constrained gas system optimization in terms of the variance
of nodal pressures. The values in red show the probability of flow reversal in the gas pipelines,
as compared to the nominal flow directions. It is observed that the variance-agnostic control

Variance-aware control policies
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Mitigating impactsofuncertaintypropagation

Variance-agnostic control policies
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Figure 3.6: Expected gas injection cost (in $1000) versus pressure variance (in MPa2) for di�erent
assignments of control policies to flexible agents while pressure variance penalty c� � [0.001, 0.1].
Adapted from [Paper D].
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Figure 3.7: Comparison of the variance-agnostic (left) and variance-aware (right) chance-
constrained control policies in terms of variance of the state variables for � = 0.1. The red
values show the probability of flow reversal in the pipelines. The inset plot shows the correlation
between pressures at nodes 34 and 35. Adapted from [Paper D].

Cost-variance trade-o�

The trade-o� between expected cost and variance of state variables is studied by gradually
increasing the penalties on the standard deviations, such that zero values of penalties in (3.24a)
correspond to variance-agnostic chance-constrained gas system optimization. It was observed that
without any substantial impact on expected cost, variance-aware control policies are able to reduce
the variance of pressures and flows by 63.8% and 7.2%, respectively. These reductions in variance
are attained by optimal pressure regulation provided by the active pipelines, with valves becoming
more active as standard deviations of state variables are highly penalized while seeking further
variance reduction. Figure 3.6 analyzes the contributions of various flexible agents in reducing
the variance of nodal pressure in the natural gas system. The various line plots were obtained
by selectively suppressing recourse actions. For instance, the ‘injection only’ case was obtained
by enforcing active pipelines recourse actions � = 0 while the case ‘injection + compressors’ was
obtained by enforcing valve recourse actions to be zero, i.e., [�]�(e,:) = 0, �e � Ev. It is observed
that as the pressure variance penalty increases, rapid reduction in variance is achieved at a lower
cost as the gas system operator deploys pressure regulation to mitigate uncertainty and variance.

The density plots in Figure 3.7 show a comparison of variance-agnostic and variance-aware
formulations of the proposed chance-constrained gas system optimization in terms of the variance
of nodal pressures. The values in red show the probability of flow reversal in the gas pipelines,
as compared to the nominal flow directions. It is observed that the variance-agnostic control

Variance-aware control policies

58 CHAPTER 3. UNCERTAINTY-AWARE COORDINATION AMONG ENERGY SYSTEMS

85 90 95 100

10

20

30

40

c� increases

Expected gas injection cost

�
m

Va
r[�̃

m
(�

)]

injection only
injection + compressors
injection + compressors + valves

Figure 3.6: Expected gas injection cost (in $1000) versus pressure variance (in MPa2) for di�erent
assignments of control policies to flexible agents while pressure variance penalty c� � [0.001, 0.1].
Adapted from [Paper D].

1
• 2•

9 •

0.01%
11 •

12
•

13
•

17
•

18
•

20•

19
•

14
•

16 •

15 •

•

10 •

8•

7•

6
•

4 •

3 •

5 •

•

21•

•

48•

25
•

26
•

37
•

28•

0.06%

22
•

23
•

24
•

46
•

45 •
47
•

44•
11%

33
•

32
•

31

•
0.37%

30 •

4.5%

29 •
34
•

35
•

36
• 43•

42•

38
•

39
•

40
•

41
•

•
27
•

c�m = 0, �m �M, c�e = 0, �e � E

Injection
Extraction
Compressor
Valve

730

1460

2200

2930

Pressure Variance

1

• 2•

9 •

11 •
12

•
13

•
17

•
18

•

20•

19
•

14
•

16 •

15 •

•

10 •

8•

7•

6

•

4 •

3 •

5 •

•

21•

•

48•

25

•
26

•

28•

37

•

22
•

23
•

24
•

46
•

45 •
47

•

44•
33

•
32

•
31

•30 •

29 •
34

•
35

•
36

• 43•

42•

38

•
39

•
40

•
41

•

•
27
•

Figure 1: 48-node Gas Network

730

1460

2200

2930

Pressure Variance

1

• 2•

9 •

11 •
12

•
13

•
17

•
18

•

20•

19
•

14
•

16 •

15 •

•

10 •

8•

7•

6

•

4 •

3 •

5 •

•

21•

•

48•

25

•
26

•

28•

37

•

22
•

23
•

24
•

46
•

45 •
47

•

44•
33

•
32

•
31

•30 •

29 •
34

•
35

•
36

• 43•

42•

38

•
39

•
40

•
41

•

•
27
•

Figure 2: 48-node Gas Network

900

1800

2700

3600

4500

P
re

ss
u
re

va
ri

an
ce

0

1

2

3

4

5

35 34 32 36 33 47 45

Nodes

P
ro

je
ct

io
n

E
rr

or
s

std[�]
1%

5%

10%

0 200 400
0

200

400

�̃34(�)

�̃ 3
5(

�)

L

1
• 2•

9 •

11 •
12
•

13
•

17
•

18
•

20•

19
•

14
•

16 •

15 •

•

10 •

8•

7•

6
•

4 •

3 •

5 •

•

21•

•

48•

25
•

26
•

28•

37
•

22
•

23
•

24
•

46
•

45 •
47
•

44•
0.02%

33
•

32
•

31
•30 •

29 •
34

•
0.01%

35
•

36
• 43•

42•

38
•

39
•

40
•

41
•

•
27
•

c�m = 0.1, �m �M, c�e = 10, �e � E

Figure 3.7: Comparison of the variance-agnostic (left) and variance-aware (right) chance-
constrained control policies in terms of variance of the state variables for � = 0.1. The red
values show the probability of flow reversal in the pipelines. The inset plot shows the correlation
between pressures at nodes 34 and 35. Adapted from [Paper D].

Cost-variance trade-o�

The trade-o� between expected cost and variance of state variables is studied by gradually
increasing the penalties on the standard deviations, such that zero values of penalties in (3.24a)
correspond to variance-agnostic chance-constrained gas system optimization. It was observed that
without any substantial impact on expected cost, variance-aware control policies are able to reduce
the variance of pressures and flows by 63.8% and 7.2%, respectively. These reductions in variance
are attained by optimal pressure regulation provided by the active pipelines, with valves becoming
more active as standard deviations of state variables are highly penalized while seeking further
variance reduction. Figure 3.6 analyzes the contributions of various flexible agents in reducing
the variance of nodal pressure in the natural gas system. The various line plots were obtained
by selectively suppressing recourse actions. For instance, the ‘injection only’ case was obtained
by enforcing active pipelines recourse actions � = 0 while the case ‘injection + compressors’ was
obtained by enforcing valve recourse actions to be zero, i.e., [�]�(e,:) = 0, �e � Ev. It is observed
that as the pressure variance penalty increases, rapid reduction in variance is achieved at a lower
cost as the gas system operator deploys pressure regulation to mitigate uncertainty and variance.

The density plots in Figure 3.7 show a comparison of variance-agnostic and variance-aware
formulations of the proposed chance-constrained gas system optimization in terms of the variance
of nodal pressures. The values in red show the probability of flow reversal in the gas pipelines,
as compared to the nominal flow directions. It is observed that the variance-agnostic control
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Conclusions

• A multi-period, multi-commodity conicmarket framework:
• nonlinearities in assets, network, and uncertainty models
• analytically proven satisfaction of economic properties

• endogenous pricing of uncertainty and its mitigation
• improvement in social welfare and feasibility guarantees for market outcomes

• Modeling & mitigation of uncertainty propagation among energy systems:
• convexi�cation of gas network dynamics under uncertainty
• market-based mitigation of uncertainty impacts
• trade-o�s between operations cost and uncertainty propagation impacts
• conic pricing scheme incentivizes uncertainty & variance mitigation services
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Conclusions&perspectives

Futureresearchperspectives

1 Newmarket-clearing use cases and �exibility services
• �nancial contracts for network �exibility
• coordination between transmission & distribution systems for �exibility

2 Generalization beyond SOC, e.g., semi-de�nite programming (SDP)
• SDP relaxation of network �ows
• robusti�cation of uncertainty models

3 From centralized coordination to decentralized or local coordination
• local data sharing to improve payo�s and harness cross-carrier �exibility
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Thank you for listening.
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