

Ph.D. Defense

Market Design for Integrated Energy Systems of the Future

Ph.D. Candidate: Anubhav Ratha

Supervisors: Pierre Pinson, Jalal Kazempour, and Ana Virag

June 1, 2022

Technical University of Denmark

Energy systems are evolving: Green transition

For example, in Denmark:

- Fossil fuels → weather-dependent renewables
- High uncertainty and variability
- Additional operational flexibility needed

Source: Green Power Denmark

Energy systems are evolving: Growing interdependence

Electricity system

Natural gas system District heating system

Energy systems are evolving: Growing interdependence

- Operational synergies → cross-carrier flexibility
 - flexible operation of boundary agents
 - network flexibility from short-term storage

Energy systems are evolving: Growing interdependence

- Operational synergies → cross-carrier flexibility
 - flexible operation of boundary agents
 - network flexibility from short-term storage
- Sequential and separate energy markets → over-/under-estimation of flexibility

Energy systems are evolving: Growing interdependence

- Operational synergies → cross-carrier flexibility
 - flexible operation of boundary agents
 - network flexibility from short-term storage
- Sequential and separate energy markets → over-/under-estimation of flexibility
- Market-based coordination is crucial

Research questions

- How to design generic and efficient market mechanisms and products to harness cross-carrier flexibility?
- How to model and mitigate uncertainty propagation among energy systems via market-based coordination

Research questions

- How to design **generic** and **efficient** market mechanisms and products to harness cross-carrier flexibility?
- How to model and mitigate uncertainty propagation among energy systems via market-based coordination

Research questions

- How to design generic and efficient market mechanisms and products to harness cross-carrier flexibility?
- 2 How to model and mitigate uncertainty propagation among energy systems via market-based coordination?

Towards flexibility-centric electricity markets

• Spatial price equilibrium using linear programming (LP)

Towards flexibility-centric electricity markets

- Spatial price equilibrium using linear programming (LP)
- LP is limiting, as **nonlinearities** common to:
 - costs and constraints of market participants
 - physical flow models in networks
 - uncertainty modeling approaches

roduction

Towards flexibility-centric electricity markets

- Spatial price equilibrium using linear programming (LP)
- LP is limiting, as **nonlinearities** common to:
 - costs and constraints of market participants
 - physical flow models in networks
 - uncertainty modeling approaches
- Heterogeneous flexibility providers with spatio-temporal coupling constraints

Towards flexibility-centric electricity markets

- Spatial price equilibrium using linear programming (LP)
- LP is limiting, as **nonlinearities** common to:
 - costs and constraints of market participants
 - physical flow models in networks
 - uncertainty modeling approaches
- Heterogeneous flexibility providers with spatio-temporal coupling constraints

Objective 1

To develop a **general flexibility-centric** electricity market framework which admits nonlinearities in uncertainty, assets, and energy networks.

Figure inspiration: V. Dvorkin, Stochastic & private energy system optimization, 2021.

Thesis contributions: Objective 1

Objective 1: To develop a general flexibility-centric electricity market framework which admits nonlinearities in uncertainty, assets, and energy networks.

- 1 A multi-period & multi-commodity conic electricity market
 - Asset and network nonlinearities as second-order cone (SOC) constraints
 - Variety of flexibility services as additional commodities
 - Endogenous modeling and pricing of uncertainty

Thesis contributions: Objective 1

Objective 1: To develop a general flexibility-centric electricity market framework which admits nonlinearities in uncertainty, assets, and energy networks.

- A multi-period & multi-commodity conic electricity market
 - Asset and network nonlinearities as second-order cone (SOC) constraints
 - Variety of flexibility services as additional commodities
 - Endogenous modeling and pricing of uncertainty
- 2 Analytical proofs for desired economic properties of competitive markets
 - No properties lost in moving from linear towards conic markets

Thesis contributions: Objective 1

Objective 1: To develop a general flexibility-centric electricity market framework which admits nonlinearities in uncertainty, assets, and energy networks.

- A multi-period & multi-commodity conic electricity market
 - Asset and network nonlinearities as second-order cone (SOC) constraints
 - Variety of flexibility services as additional commodities
 - Endogenous modeling and pricing of uncertainty
- Analytical proofs for desired economic properties of competitive markets
 - No properties lost in moving from linear towards conic markets
- 3 Optimally-sized policy-based reserves over capacity-based reserves
 - Lower operations cost with guarantees against uncertainty realizations

Towards uncertainty-aware energy system coordination

 Uncertainty in natural gas systems → price spikes, network congestion

Towards uncertainty-aware energy system coordination

 Uncertainty in natural gas systems → price spikes, network congestion

roduction

Towards uncertainty-aware energy system coordination

- Uncertainty in natural gas systems → price spikes, network congestion
- Mitigating uncertainty propagation is challenging:
 - nonlinearities and non-convexities
 - state variables and operational constraints
 - market-based incentives

Towards uncertainty-aware energy system coordination

- Uncertainty in natural gas systems → price spikes, network congestion
- Mitigating uncertainty propagation is challenging:
 - nonlinearities and non-convexities
 - state variables and operational constraints
 - market-based incentives

Objective 2

To develop a methodology to harness cross-carrier flexibility in energy markets while taking **uncertainty propagation** into account.

Thesis contributions: Objective 2

Objective 2: To develop a methodology to harness cross-carrier flexibility in energy markets while taking uncertainty propagation into account.

- 1 Uncertainty-aware electricity and gas dispatch with linepack flexibility
 - Nonlinear and non-convex gas flow dynamics under uncertainty
 - Trade-off: operations cost vs. robustness to uncertainty propagation

Thesis contributions: Objective 2

Objective 2: To develop a methodology to harness cross-carrier flexibility in energy markets while taking uncertainty propagation into account.

- 1 Uncertainty-aware electricity and gas dispatch with linepack flexibility
 - Nonlinear and non-convex gas flow dynamics under uncertainty
 - Trade-off: operations cost vs. robustness to uncertainty propagation
- Stochastic control policies for natural gas networks
 - Analytical description of system state to the uncertainty propagated
 - Market-based minimization of variance of state variables

Thesis contributions: Objective 2

Objective 2: To develop a methodology to harness cross-carrier flexibility in energy markets while taking uncertainty propagation into account.

- Uncertainty-aware electricity and gas dispatch with linepack flexibility
 - Nonlinear and non-convex gas flow dynamics under uncertainty
 - Trade-off: operations cost vs. robustness to uncertainty propagation
- Stochastic control policies for natural gas networks
 - Analytical description of system state to the uncertainty propagated
 - Market-based minimization of variance of state variables
- 3 Efficient pricing scheme to remunerate (penalize) agents for mitigating (aggravating) uncertainty and variance

Publications

Flexibility-centric electricity markets:

- 1 A. Ratha, P. Pinson, H. Le Cadre, A. Virag and J. Kazempour, "Moving from linear to conic markets for electricity", submitted to European Journal of Operational Research, (under review, second round), 2021.
- 2 A. Ratha, J. Kazempour, A. Virag and P. Pinson, "Exploring market properties of policy-based reserve procurement for power systems", in 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, pp. 7498-7505.

Uncertainty-aware coordination among energy systems:

- 3 A. Ratha, A. Schwele, J. Kazempour, P. Pinson, S. Shariat Torbaghan and A. Virag, "Affine policies for flexibility provision by natural gas networks to power systems", in *Electric Power* Systems Research, Volume 189, Article 106565, December 2020.
- V. Dvorkin, A. Ratha, P. Pinson and J. Kazempour, "Stochastic control and pricing for natural gas networks", in *IEEE Transactions on Control of Network Systems*, Volume 9, Issue 1, pp. 450-462, March 2022.

Outline

Introduction

Flexibility-centric electricity markets

Uncertainty propagation in energy systems

Conclusions & perspectives

Preliminaries

Conic market

A market-clearing problem that admits **convex strategy sets** of market participants involving **second-order cones** of arbitrary dimensions.

Preliminaries

Conic market

A market-clearing problem that admits convex strategy sets of market participants involving **second-order cones** of arbitrary dimensions.

Second-order cone (SOC)

A SOC \mathcal{C} of dimension m is a convex set defined. for tuple (\mathbf{u}, v) , $\mathbf{u} \in \mathbb{R}^m$ and $v \in \mathbb{R}_+$, as

$$C := \left\{ \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} \middle| \|\mathbf{u}\| \leqslant \mathbf{v} \right\} \subseteq \mathbb{R}^{m+1}.$$

9 / 27

Flexibility-centric electricity markets

Market setting

- Hourly day-ahead market cleared over T=24 hours
- P commodities of two kinds: energy and flexibility services
- ullet Heterogeneous participants, $i\in\mathcal{I}$

Market setting

- Hourly day-ahead market cleared over T = 24 hours
- P commodities of two kinds: energy and flexibility services
- ullet Heterogeneous participants, $i\in\mathcal{I}$
- Participant's decision vector $\mathbf{q}_{it} \in \mathbb{R}^{K_i}$, where $K_i \geqslant P$

$$\mathbf{q}_{i} = \begin{bmatrix} \mathbf{q}_{i1} \\ \mathbf{q}_{i2} \\ \vdots \\ \mathbf{q}_{iT} \end{bmatrix} \in \mathbb{R}^{K_{i}T}$$

• **Temporally-separable** convex quadratic cost function, $c_{it}(\mathbf{q}_{it}) : \mathbb{R}^{K_i} \mapsto \mathbb{R}$:

$$c_{it}(\mathbf{q}_{it}) = \mathbf{c}_{it}^{\mathsf{L}^{\top}} \mathbf{q}_{it} + \mathbf{q}_{it}^{\top} \operatorname{diag}(\mathbf{c}_{it}^{\mathsf{Q}}) \mathbf{q}_{it}$$

SOC constraints

Generic SOC constraint

A generic SOC constraint on variable \mathbf{q}_i of *i*-th market participant is

$$\|\mathbf{A}_i \ \mathbf{q}_i + \mathbf{b}_i\| \leqslant \mathbf{d}_i^{\top} \ \mathbf{q}_i + e_i$$

Parameters $\mathbf{A}_i \in \mathbb{R}^{m_i \times K_i T}$, $\mathbf{b}_i \in \mathbb{R}^{m_i}$, $\mathbf{d}_i \in \mathbb{R}^{K_i T}$ and $\mathbf{e}_i \in \mathbb{R}$ embody the **structural** and **geometrical** information of each constraint.

SOC constraints

Generic SOC constraint

A generic SOC constraint on variable \mathbf{q}_i of *i*-th market participant is

$$\|\mathbf{A}_i \mathbf{q}_i + \mathbf{b}_i\| \leqslant \mathbf{d}_i^{\top} \mathbf{q}_i + e_i \Leftrightarrow \begin{bmatrix} \mathbf{A}_i \\ \mathbf{d}_i^{\top} \end{bmatrix} \mathbf{q}_i + \begin{bmatrix} \mathbf{b}_i \\ e_i \end{bmatrix} \in \mathcal{C}_i \subseteq \mathbb{R}^{m_i+1}.$$

Parameters $\mathbf{A}_i \in \mathbb{R}^{m_i \times K_i T}$, $\mathbf{b}_i \in \mathbb{R}^{m_i}$, $\mathbf{d}_i \in \mathbb{R}^{K_i T}$ and $\mathbf{e}_i \in \mathbb{R}$ embody the **structural** and **geometrical** information of each constraint.

SOC constraints

Generic SOC constraint

A generic SOC constraint on variable \mathbf{q}_i of *i*-th market participant is

$$\|\mathbf{A}_i \ \mathbf{q}_i + \mathbf{b}_i\| \leqslant \mathbf{d}_i^{\top} \ \mathbf{q}_i + \mathbf{e}_i \Leftrightarrow \begin{bmatrix} \mathbf{A}_i \\ \mathbf{d}_i^{\top} \end{bmatrix} \mathbf{q}_i + \begin{bmatrix} \mathbf{b}_i \\ \mathbf{e}_i \end{bmatrix} \in \mathcal{C}_i \subseteq \mathbb{R}^{m_i+1}.$$

Parameters $\mathbf{A}_i \in \mathbb{R}^{m_i \times K_i T}$, $\mathbf{b}_i \in \mathbb{R}^{m_i}$, $\mathbf{d}_i \in \mathbb{R}^{K_i T}$ and $\mathbf{e}_i \in \mathbb{R}$ embody the **structural** and **geometrical** information of each constraint.

- Special cases:
 - $\mathbf{A}_i = \mathbf{0} \implies 0 \leq \mathbf{d}_i^{\top} \mathbf{q}_i + \mathbf{e}_i$

• $\mathbf{d}_i = \mathbf{0}, \ e_i \geqslant 0 \implies \|\mathbf{A}_i \ \mathbf{q}_i + \mathbf{b}_i\| \leqslant e_i$

(linear inequalities)

(quadratic inequalities)

Conic market as an optimization problem

$$\begin{aligned} & \underset{\mathbf{q}_{i}, \, \mathbf{z}_{i}}{\text{min}} \quad \sum_{i \in \mathcal{I}} \sum_{t \in \mathcal{T}} \, z_{it} + \mathbf{c}_{it}^{\mathsf{L}^{\mathsf{T}}} \mathbf{q}_{it} \\ & \text{s.t.} \quad \|\mathbf{C}_{it}^{\mathsf{Q}} \, \mathbf{q}_{it}\|^{2} \leq z_{it}, \, \forall t, \, \forall i \\ & \quad \|\mathbf{A}_{ij} \, \mathbf{q}_{i} + \mathbf{b}_{ij}\| \leqslant \mathbf{d}_{ij}^{\mathsf{T}} \, \mathbf{q}_{i} + \boldsymbol{e}_{ij}, \, j \in \mathcal{J}_{i}, \, \forall i \\ & \quad F_{i} \, \mathbf{q}_{i} = \mathbf{h}_{i}, \, \forall i \end{aligned} \qquad \qquad :(\mu_{it}^{\mathsf{Q}}, \kappa_{it}^{\mathsf{Q}}, \nu_{it}^{\mathsf{Q}}) \quad \mathsf{C}_{it}^{\mathsf{Q}}$$

 $:(\mu_{it}^{\mathbb{Q}}, \kappa_{it}^{\mathbb{Q}}, \nu_{it}^{\mathbb{Q}})$ Objective reformulation $:(\mu_{ij}, \nu_{ij})$ Multiple SOC constraints $:(\gamma_i)$ Equality constraints

Conic market as an optimization problem

$$\begin{aligned} & \underset{\mathbf{q}_{i},\,\mathbf{z}_{i}}{\min} & \sum_{i \in \mathcal{I}} \sum_{t \in \mathcal{T}} \mathbf{z}_{it} + \mathbf{c}_{it}^{\mathsf{L}^{\mathsf{T}}} \mathbf{q}_{it} \\ & \text{s.t.} & \|\mathbf{C}_{it}^{\mathsf{Q}}\,\,\mathbf{q}_{it}\|^{2} \leq \mathbf{z}_{it},\,\,\forall t,\,\,\forall i & :(\boldsymbol{\mu}_{it}^{\mathsf{Q}},\kappa_{it}^{\mathsf{Q}},\boldsymbol{\nu}_{it}^{\mathsf{Q}}) & \text{Objective reformulation} \\ & \|\mathbf{A}_{ij}\,\,\mathbf{q}_{i} + \mathbf{b}_{ij}\| \leqslant \mathbf{d}_{ij}^{\mathsf{T}}\,\,\mathbf{q}_{i} + \boldsymbol{e}_{ij},\,\,j \in \mathcal{J}_{i},\,\,\forall i & :(\boldsymbol{\mu}_{ij},\,\,\boldsymbol{\nu}_{ij}) & \text{Multiple SOC constraints} \\ & \mathbf{F}_{i}\,\,\mathbf{q}_{i} = \mathbf{h}_{i},\,\,\forall i & :(\boldsymbol{\gamma}_{i}) & \text{Equality constraints} \\ & \sum_{i \in \mathcal{I}_{n}} \mathbf{G}_{ip}\,\,\mathbf{q}_{ip} = \mathbf{0}_{\mathcal{T}},\,\,\forall p,\,\,\forall n & :(\boldsymbol{\lambda}_{pn}) & \text{Supply-demand balance} \end{aligned}$$

$$-\, \overline{\mathbf{s}} \leqslant \sum_{n \in \mathcal{N}} \Psi_{(:,n)} \left(\sum_{i \in \mathcal{I}_n} \sum_{p \in \mathcal{P}} \left[\mathbf{G}_{ip} \, \mathbf{q}_{ip}
ight]_t
ight) \leqslant \overline{\mathbf{s}}, \; orall t \quad : (\underline{arrho}_t, \; \overline{arrho}_t)$$

Network flow constraints

Flexibility-centric electricity markets

Bid structure

Bid structure

Conic market bids

Participant i located at network node n_i submits a bid

$$\mathcal{B}_i := \Big(n_i, \ \{\mathbf{A}_{ij}, \mathbf{b}_{ij}, \mathbf{d}_{ij}, \mathbf{e}_{ij}\}_{j \in \mathcal{J}_i}, \ \mathbf{F}_i, \mathbf{h}_i, \ \{\mathbf{G}_{ip}\}_{p \in \mathcal{P}}, \ \{\mathbf{c}_{it}^{\mathsf{Q}}, \mathbf{c}_{it}^{\mathsf{L}}\}_{t \in \mathcal{T}}\Big).$$

Conic market bids

Conic market bids

Participant i located at network node n_i submits a bid

$$\mathcal{B}_i := \left(\begin{array}{ccc} \textit{\textit{n}}_i \;,\; \{\textbf{A}_{\textit{\textit{ij}}},\textbf{b}_{\textit{\textit{ij}}},\; \textbf{d}_{\textit{\textit{\textit{ij}}}} \;,\; \textbf{e}_{\textit{\textit{\textit{ij}}}} \end{array}\right)_{j \in \mathcal{J}_i},\; \textbf{F}_i, \textbf{h}_i,\; \{\textbf{G}_{\textit{\textit{\textit{ip}}}}\}_{\textit{\textit{p}} \in \mathcal{P}},\; \{\textbf{c}_{\textit{\textit{\textit{it}}}}^{\textrm{Q}},\; \textbf{c}_{\textit{\textit{\textit{\textit{it}}}}}^{\textrm{L}} \}_{\textit{\textit{\textit{t}}} \in \mathcal{T}} \right).$$

- Conic market bids
 - generalize the prevalent **price-quantity** bids

Conic market bids

Participant i located at network node n_i submits a bid

$$\mathcal{B}_i := \left(\textit{n}_i, \; \{\; \boldsymbol{A}_{ij} \;,\; \boldsymbol{b}_{ij} \;, \boldsymbol{d}_{ij}, \boldsymbol{e}_{ij}\}_{j \in \mathcal{J}_i}, \;\; \boldsymbol{F}_i \;,\; \boldsymbol{h}_i \;,\; \{\boldsymbol{G}_{ip}\}_{p \in \mathcal{P}}, \; \{\boldsymbol{c}_{it}^Q, \boldsymbol{c}_{it}^L\}_{t \in \mathcal{T}}\right).$$

- Conic market bids
 - generalize the prevalent price-quantity bids
 - replace complex block orders, preserving convexity

Conic market bids

Participant i located at network node n_i submits a bid

$$\mathcal{B}_i := \Big(\textit{n}_i, \ \{ \mathbf{A}_{ij}, \mathbf{b}_{ij}, \mathbf{d}_{ij}, \textit{e}_{ij} \}_{j \in \mathcal{J}_i}, \ \mathbf{F}_i, \mathbf{h}_i, \ \ \{ \mathbf{G}_{ip} \}_{p \in \mathcal{P}}, \ \{ \mathbf{c}_{it}^Q, \mathbf{c}_{it}^L \}_{t \in \mathcal{T}} \Big).$$

- Conic market bids
 - generalize the prevalent price-quantity bids
 - replace complex block orders, preserving convexity
 - enable trades in energy and multiple flexibility services

Conic market bids

Participant i located at network node n_i submits a bid

$$\mathcal{B}_i := \left(n_i, \ \{\mathbf{A}_{ij}, \mathbf{b}_{ij}, \mathbf{d}_{ij}, e_{ij}\}_{j \in \mathcal{J}_i}, \ \mathbf{F}_i, \mathbf{h}_i, \ \{\mathbf{G}_{ip}\}_{p \in \mathcal{P}}, \ \{\mathbf{c}_{it}^{\mathbb{Q}}, \mathbf{c}_{it}^{\mathbb{L}}\}_{t \in \mathcal{T}}\right).$$

Conic market bids

DTU Wind & Energy Systems

- generalize the prevalent price-quantity bids
- replace complex block orders, preserving convexity
- enable trades in energy and multiple flexibility services
- admit quadratic costs without linear approximations

- Desired economic properties proven analytically:
 - **1 efficiency** of the market
 - 2 cost recovery of participants
 - 3 revenue adequacy of the market operator

Use Case: Uncertainty-aware electricity markets

Sequential energy and reserve markets

Sequential energy and reserves

- Sequential energy and reserve markets \rightarrow **co-optimization**
- Deterministic linear markets with minimum reserve requirements (MRR)

- Sequential energy and reserve markets \rightarrow co-optimization
- Deterministic linear markets with minimum reserve requirements (MRR)
- Stochastic linear markets propose scenarios or uncertainty sets

- Sequential energy and reserve markets \rightarrow co-optimization
- Deterministic linear markets with minimum reserve requirements (MRR)
- Stochastic linear markets propose scenarios or uncertainty sets

- Sequential energy and reserve markets \rightarrow co-optimization
- Deterministic linear markets with minimum reserve requirements (MRR)
- Stochastic linear markets propose scenarios or uncertainty sets

A two-commodity chance-constrained electricity market

A two-commodity chance-constrained electricity market

 $\sum_{i} \alpha_{i} = 1$

A two-commodity chance-constrained electricity market

A two-commodity chance-constrained electricity market

• SOC reformulation of chance constraints:

A two-commodity chance-constrained electricity market

SOC reformulation of chance constraints:

where μ , **X** are mean & covariance and r_{ε} is a safety parameter.

Adjustment policies \rightarrow Endogenous pricing of flexibility

- Forecast errors: Gaussian distribution
- Parameter γ : variance of test vs. model distribution

Adjustment policies \rightarrow Endogenous pricing of flexibility

- Forecast errors: Gaussian distribution
- Parameter γ : variance of test vs. model distribution

Numerical experiments: 24-node electricity system

• \mathcal{M}^{cc} : conic chance-constrained market

- Linear benchmarks
 - R1: deterministic MRR-based market
 - R2: stochastic scenario-based market

Numerical experiments: 24-node electricity system

• \mathcal{M}^{cc} : conic chance-constrained market

DTU Wind & Energy Systems

- Linear benchmarks
 - R1: deterministic MRR-based market
 - R2: stochastic scenario-based market

Numerical experiments: 24-node electricity system

• \mathcal{M}^{cc} : conic chance-constrained market

- Linear benchmarks
 - R1: deterministic MRR-based market
 - R2: stochastic scenario-based market

18 / 27

Uncertainty propagation in energy systems

Outline

Introduction

Flexibility-centric electricity markets

Uncertainty propagation in energy systems

Conclusions & perspectives

Uncertainty propagation in energy systems

Stochastic electricity and gas dispatch

Stochastic electricity and gas dispatch

$$\min_{\tilde{\mathbf{x}}^{\mathrm{E}}, \ \tilde{\mathbf{x}}^{\mathrm{G}}} \quad \max_{\mathbb{P}_{\varepsilon} \in \mathcal{P}} \quad \mathbb{E}^{\mathbb{P}_{\varepsilon}} \Big[\sum_{t \in \mathcal{T}} \Big(\sum_{i \in \mathcal{I}} \ c_i^{\mathrm{E}}(\tilde{\mathbf{x}}_{it}^{\mathrm{E}}) + \sum_{k \in \mathcal{K}} \ c_k^{\mathrm{G}}(\tilde{\mathbf{x}}_{kt}^{\mathrm{G}}) \Big) \Big]$$

DTU Wind & Energy Systems

Uncertainty propagation in energy systems

Stochastic electricity and gas dispatch

$$\begin{aligned} & \underset{\tilde{\mathbf{x}}^{\mathrm{E}}, \ \tilde{\mathbf{x}}^{\mathrm{G}}}{\min} & \max_{\substack{\tilde{\mathbf{p}}_{\mathrm{E}} \in \mathcal{P}}} & \mathbb{E}^{\mathbb{P}_{\mathrm{E}}} \Big[\sum_{t \in \mathcal{T}} \Big(\sum_{i \in \mathcal{I}} c_{i}^{\mathrm{E}} (\tilde{\mathbf{x}}_{it}^{\mathrm{E}}) + \sum_{k \in \mathcal{K}} c_{k}^{\mathrm{G}} (\tilde{\mathbf{x}}_{kt}^{\mathrm{G}}) \Big) \Big] \\ & \text{s.t.} & \min_{\substack{\mathbf{p}_{\mathrm{E}} \in \mathcal{P}}} & \mathbb{P}_{\mathrm{E}} \begin{bmatrix} h^{\mathrm{E}} (\tilde{\mathbf{x}}_{t}^{\mathrm{E}}) \leqslant \mathbf{0}, & h^{\mathrm{G}} (\tilde{\mathbf{x}}_{t}^{\mathrm{G}}) \leqslant \mathbf{0} \\ u^{\varrho} (\tilde{\varrho}_{t}) \leqslant \mathbf{0}, & u^{\varphi} (\tilde{\varphi}_{t}) \leqslant \mathbf{0} \end{bmatrix} \geqslant \mathbf{1} - \varepsilon, \ \forall t \in \mathcal{T} \end{aligned}$$

- Distributionally-robust chance constraints
 - from observations → ambiguity set
 - robust against worst-case probability distribution

Uncertainty propagation in energy systems

Stochastic electricity and gas dispatch

$$\begin{aligned} & \underset{\tilde{\mathbf{x}}^{E}, \, \tilde{\mathbf{x}}^{G}}{\min} & \underset{\mathbb{P}_{\varepsilon} \in \mathcal{P}}{\max} & \mathbb{E}^{\mathbb{P}_{\varepsilon}} \left[\sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{I}} c_{i}^{E}(\tilde{\mathbf{x}}_{it}^{E}) + \sum_{k \in \mathcal{K}} c_{k}^{G}(\tilde{\mathbf{x}}_{kt}^{G}) \right) \right] \\ & \text{s.t.} & \underset{\mathbb{P}_{\varepsilon} \in \mathcal{P}}{\min} & \mathbb{P}_{\varepsilon} \left[h^{E}(\tilde{\mathbf{x}}_{t}^{E}) \leqslant 0, & h^{G}(\tilde{\mathbf{x}}_{t}^{G}) \leqslant 0 \\ u^{\varrho}(\tilde{\varrho}_{t}) \leqslant 0, & u^{\varphi}(\tilde{\varphi}_{t}) \leqslant 0 \right] \geqslant 1 - \varepsilon, \, \forall t \in \mathcal{T} \\ & \underset{\mathbb{P}_{\varepsilon} \in \mathcal{P}}{\min} & \mathbb{P}_{\varepsilon} \left[f^{EM}(\tilde{\mathbf{x}}_{t}^{E}, \boldsymbol{\delta}_{t}^{E}) = 0, & f^{GM}(\tilde{\mathbf{x}}_{t}^{E}, \tilde{\mathbf{x}}_{t}^{G}, \boldsymbol{\delta}_{t}^{G}) = 0 \\ \mathcal{W}(\tilde{\varrho}_{t}, \tilde{\varphi}_{t}) = 0, & \mathcal{S}_{t}(\tilde{\varrho}_{t}, \tilde{\varphi}_{t}) = 0 \end{array} \right] \overset{\text{a.s.}}{=} 1, \, \forall t \in \mathcal{T} \end{aligned}$$

- Distributionally-robust chance constraints
 - from observations → ambiguity set
 - robust against worst-case probability distribution

Stochastic electricity and gas dispatch

$$\min_{\substack{\tilde{\mathbf{X}}^{\mathsf{E}}, \ \tilde{\mathbf{X}}^{\mathsf{G}} \\ \tilde{\varrho}, \ \tilde{\varphi}}} \;\; \max_{\mathbb{P}_{\xi} \in \mathcal{P}} \;\; \mathbb{E}^{\mathbb{P}_{\xi}} \Big[\sum_{t \in \mathcal{T}} \Big(\sum_{i \in \mathcal{I}} \; \boldsymbol{c}_{i}^{\mathsf{E}} (\tilde{\boldsymbol{x}}_{it}^{\mathsf{E}}) + \sum_{k \in \mathcal{K}} \; \boldsymbol{c}_{k}^{\mathsf{G}} (\tilde{\boldsymbol{x}}_{kt}^{\mathsf{G}}) \Big) \Big]$$

DTU Wind & Energy Systems

$$\text{s.t.} \quad \min_{\mathbb{P}_{\xi} \in \mathcal{P}} \quad \mathbb{P}_{\xi} \left[\begin{matrix} h^{\mathsf{E}}(\tilde{\mathbf{x}}_{t}^{\mathsf{E}}) \leqslant 0, & h^{\mathsf{G}}(\tilde{\mathbf{x}}_{t}^{\mathsf{G}}) \leqslant 0 \\ u^{\varrho}(\tilde{\varrho}_{t}) \leqslant 0, & u^{\varphi}(\tilde{\varphi}_{t}) \leqslant 0 \end{matrix} \right] \geqslant 1 - \varepsilon, \ \forall t \in \mathcal{T}$$

$$\min_{\mathbb{P}_{\xi} \in \mathcal{P}} \ \mathbb{P}_{\xi} \begin{bmatrix} f^{\text{EM}}(\tilde{\mathbf{x}}_{t}^{\text{E}}, \delta_{t}^{\text{E}}) = 0, & f^{\text{GM}}(\tilde{\mathbf{x}}_{t}^{\text{E}}, \tilde{\mathbf{x}}_{t}^{\text{G}}, \delta_{t}^{\text{G}}) = 0 \\ \mathcal{W}(\tilde{\varrho}_{t}, \tilde{\varphi}_{t}) = \mathbf{0}, & \mathcal{S}_{t}(\tilde{\varrho}_{t}, \tilde{\varphi}_{t}) = \mathbf{0} \end{bmatrix} \overset{\text{a.s.}}{=} 1, \ \forall t \in \mathcal{T}$$

- Distributionally-robust chance constraints
 - from observations → ambiguity set
 - robust against worst-case probability distribution
- Computationally-intractable, semi-infinite program:
 - analytical network response to uncertainty unavailable
 - 2 non-convex robust joint chance constraints
 - nonlinear and non-convex state dynamics

Moment-based ambiguity set:

$$\mathcal{P} = \{\mathbb{P}_{\pmb{\xi}} \in \mathcal{P}^0(\mathbb{R}^{\textit{WT}}) \; : \; \mathbb{E}^{\mathbb{P}_{\pmb{\xi}}}[\pmb{\xi}] = \pmb{\mu}, \; \mathbb{E}^{\mathbb{P}_{\pmb{\xi}}}[\pmb{\xi}\pmb{\xi}^\top] = \pmb{\Sigma}\}$$

Towards computational tractability

Moment-based ambiguity set:

$$\mathcal{P} = \{\mathbb{P}_{\pmb{\xi}} \in \mathcal{P}^0(\mathbb{R}^{\textit{WT}}) \; : \; \mathbb{E}^{\mathbb{P}_{\pmb{\xi}}}[\pmb{\xi}] = \pmb{\mu}, \; \mathbb{E}^{\mathbb{P}_{\pmb{\xi}}}[\pmb{\xi\xi}^\top] = \pmb{\Sigma}\}$$

1 Affine control policies as recourse actions:

$$\tilde{\mathbf{x}}_{t}^{\mathsf{E}}(\boldsymbol{\xi}) = \mathbf{x}_{t}^{\mathsf{E}} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\alpha_{t}, \quad \tilde{\mathbf{x}}_{t}^{\mathsf{G}}(\boldsymbol{\xi}) = \mathbf{x}_{t}^{\mathsf{G}} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\beta_{t}, \ \forall t \\
\tilde{\varrho}_{t}(\boldsymbol{\xi}) = \varrho_{t} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\eta_{t}, \quad \tilde{\varphi}_{t}(\boldsymbol{\xi}) = \varphi_{t} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\zeta_{t}, \ \forall t$$

Towards computational tractability

Moment-based ambiguity set:

$$\mathcal{P} = \{\mathbb{P}_{\pmb{\xi}} \in \mathcal{P}^0(\mathbb{R}^{\textit{WT}}) \; : \; \mathbb{E}^{\mathbb{P}_{\pmb{\xi}}}[\pmb{\xi}] = \pmb{\mu}, \; \mathbb{E}^{\mathbb{P}_{\pmb{\xi}}}[\pmb{\xi}\pmb{\xi}^\top] = \pmb{\Sigma}\}$$

Affine control policies as recourse actions:

$$\tilde{\mathbf{x}}_{t}^{\mathsf{E}}(\boldsymbol{\xi}) = \mathbf{x}_{t}^{\mathsf{E}} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\alpha_{t}, \quad \tilde{\mathbf{x}}_{t}^{\mathsf{G}}(\boldsymbol{\xi}) = \mathbf{x}_{t}^{\mathsf{G}} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\beta_{t}, \ \forall t \\
\tilde{\varrho}_{t}(\boldsymbol{\xi}) = \varrho_{t} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\eta_{t}, \quad \tilde{\varphi}_{t}(\boldsymbol{\xi}) = \varphi_{t} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\zeta_{t}, \ \forall t$$

2 Robust joint chance constraint Bonferron's inequality deterministic SOC constraints

Towards computational tractability

Moment-based ambiguity set:

$$\mathcal{P} = \{\mathbb{P}_{\pmb{\xi}} \in \mathcal{P}^0(\mathbb{R}^{\textit{WT}}) \; : \; \mathbb{E}^{\mathbb{P}_{\pmb{\xi}}}[\pmb{\xi}] = \pmb{\mu}, \; \mathbb{E}^{\mathbb{P}_{\pmb{\xi}}}[\pmb{\xi}\pmb{\xi}^\top] = \pmb{\Sigma}\}$$

1 Affine control policies as recourse actions:

$$\tilde{\mathbf{x}}_{t}^{\mathsf{E}}(\boldsymbol{\xi}) = \mathbf{x}_{t}^{\mathsf{E}} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\alpha_{t}, \quad \tilde{\mathbf{x}}_{t}^{\mathsf{G}}(\boldsymbol{\xi}) = \mathbf{x}_{t}^{\mathsf{G}} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\beta_{t}, \ \forall t \\
\tilde{\varrho}_{t}(\boldsymbol{\xi}) = \varrho_{t} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\eta_{t}, \quad \tilde{\varphi}_{t}(\boldsymbol{\xi}) = \varphi_{t} + (\mathbb{1}^{\mathsf{T}}\boldsymbol{\xi}_{t})\zeta_{t}, \ \forall t$$

- 2 Robust joint chance constraint

 Bonferroni's inequality deterministic SOC constraints
- **3** Convexification of **non-convex quadratic** gas flow equations $\mathcal{W}(\tilde{\varrho}_t, \tilde{\varphi}_t) = 0$ by:
 - A Convex relaxations
 - B Linearization

DTU Wind & Energy Systems

Approach A: Using convex relaxations

• Assume fixed directions for gas flows & lossless pressure regulation

Stochastic quadratic equality:
$$\mathcal{W}(\tilde{\varrho}_{t}, \tilde{\varphi}_{t}) = 0$$
$$\tilde{\varrho}_{t}(\boldsymbol{\xi}) = \varrho_{t} + (\mathbf{1}^{T} \boldsymbol{\xi}_{t}) \eta_{t}$$
$$\tilde{\varphi}_{t}(\boldsymbol{\xi}) = \varphi_{t} + (\mathbf{1}^{T} \boldsymbol{\xi}_{t}) \zeta_{t}$$

Approach A: Using convex relaxations

• Assume fixed directions for gas flows & lossless pressure regulation

Approach A: Using convex relaxations

• Assume fixed directions for gas flows & lossless pressure regulation

Approach A: Using convex relaxations

Assume fixed directions for gas flows & lossless pressure regulation

DTU Wind & Energy Systems

Approach A: Using convex relaxations

• Assume fixed directions for gas flows & lossless pressure regulation

• Relaxation tightness impacts real-time feasibility

Numerical results: 24-node electricity + 12-node gas system

- Constraints with identical **violation probabilities** $\hat{\varepsilon}$
- 1000 wind forecast scenarios in DK $ightarrow \mu \ \& \ \Sigma$ forming **ambiguity set**

Numerical results: 24-node electricity + 12-node gas system

- Constraints with identical **violation probabilities** $\hat{\varepsilon}$
- 1000 wind forecast scenarios in DK $ightarrow \mu \& \Sigma$ forming **ambiguity set**

• Trade-off: expected operations cost vs. robustness to uncertainty propagation

Numerical results: 24-node electricity + 12-node gas system

- Constraints with identical **violation probabilities** $\hat{\varepsilon}$
- 1000 wind forecast scenarios in DK $ightarrow \mu \& \Sigma$ forming **ambiguity set**

- Trade-off: expected operations cost vs. robustness to uncertainty propagation
- Inexact convex relaxations → real-time flow reversals & constraint violations

Approach B: Using linearization

- First-order Taylor series expansion of non-convex gas flow equation:
 - gas flow directions not fixed
 - 2 lossy, controllable **pressure regulation** $\tilde{\kappa}$ by compressors & valves
 - ③ squared pressures, $\tilde{\pi} = \tilde{\varrho}^2$
 - ② gas injection & pressure regulation control policies: $\tilde{\mathbf{x}}^{G} = \mathbf{x}^{G} + (\mathbf{1}^{T}\boldsymbol{\xi})\boldsymbol{\beta}$, $\tilde{\kappa} = \kappa + (\mathbf{1}^{T}\boldsymbol{\xi})\boldsymbol{\gamma}$

Approach B: Using linearization

- First-order Taylor series expansion of non-convex gas flow equation:
 - 1 gas flow directions not fixed
 - 2 lossy, controllable pressure regulation $\tilde{\kappa}$ by compressors & valves
 - $oldsymbol{3}$ squared pressures, $ilde{\pi} = ilde{arrho}^2$
 - **4** gas injection & pressure regulation **control policies**: $\tilde{\mathbf{x}}^{G} = \mathbf{x}^{G} + (\mathbb{1}^{T}\boldsymbol{\xi})\boldsymbol{\beta}$, $\tilde{\kappa} = \kappa + (\mathbb{1}^{T}\boldsymbol{\xi})\boldsymbol{\gamma}$

Stochastic quadratic equality: $\mathcal{W}(ilde{\pi}_t, ilde{arphi}_t, ilde{\kappa})=0$

Approach B: Using linearization

- First-order Taylor series expansion of non-convex gas flow equation:
 - gas flow directions not fixed
 - 2 lossy, controllable **pressure regulation** $\tilde{\kappa}$ by compressors & valves
 - $oldsymbol{3}$ squared pressures, $ilde{\pi} = ilde{arrho}^2$
 - **4** gas injection & pressure regulation **control policies**: $\tilde{\mathbf{x}}^{G} = \mathbf{x}^{G} + (\mathbb{1}^{T}\boldsymbol{\xi})\boldsymbol{\beta}$, $\tilde{\kappa} = \kappa + (\mathbb{1}^{T}\boldsymbol{\xi})\boldsymbol{\gamma}$

Approach B: Using linearization

- First-order Taylor series expansion of non-convex gas flow equation:
 - 1 gas flow directions not fixed
 - 2 lossy, controllable **pressure regulation** $\tilde{\kappa}$ by compressors & valves
 - $oldsymbol{3}$ squared pressures, $ilde{\pi} = ilde{arrho}^2$
 - **4** gas injection & pressure regulation **control policies**: $\tilde{\mathbf{x}}^{G} = \mathbf{x}^{G} + (\mathbb{1}^{T}\boldsymbol{\xi})\boldsymbol{\beta}$, $\tilde{\kappa} = \kappa + (\mathbb{1}^{T}\boldsymbol{\xi})\boldsymbol{\gamma}$

Approach B: Using linearization

- First-order Taylor series expansion of non-convex gas flow equation:
 - 1 gas flow directions not fixed
 - 2 lossy, controllable **pressure regulation** $\tilde{\kappa}$ by compressors & valves
 - **3** squared pressures, $\tilde{\pi} = \tilde{\varrho}^2$
 - **4** gas injection & pressure regulation **control policies**: $\tilde{\mathbf{x}}^{G} = \mathbf{x}^{G} + (\mathbb{1}^{T}\boldsymbol{\xi})\boldsymbol{\beta}$, $\tilde{\kappa} = \kappa + (\mathbb{1}^{T}\boldsymbol{\xi})\boldsymbol{\gamma}$

State variables uncertainty response model

Uncertainty response of state variables is implicitly affine in control inputs, i.e.,

$$\tilde{\pi}(\boldsymbol{\xi}) = \pi + \underbrace{\breve{\mathbf{G}}_2(\beta - \hat{\mathbf{G}}_3 \gamma - \operatorname{diag}[1])}_{\eta} \boldsymbol{\xi} \;, \quad \tilde{\varphi}(\boldsymbol{\xi}) = \varphi + \underbrace{(\breve{\mathbf{G}}_2(\beta - \operatorname{diag}[1]) - \breve{\mathbf{G}}_3 \gamma)}_{\zeta} \boldsymbol{\xi}$$

DTU Wind & Energy Systems

23 / 27

Analytical uncertainty response \rightarrow stochastic gas market design

• Enforce operational limits on state variables, e.g., nodal pressure upper bound

$$\mathbb{P}_{\boldsymbol{\xi}}\left[\widetilde{\pi}_{n}(\boldsymbol{\xi}) \leqslant \overline{\pi}_{n}\right] \geqslant 1 - \varepsilon \implies r_{\varepsilon} \underbrace{\|\mathbf{X}[\mathbf{\check{G}}_{2}(\beta - \mathbf{\hat{G}}_{3}\gamma - \mathsf{diag}[1])]_{n}^{\top}\|}_{} \leqslant \overline{\pi}_{n} - \pi_{n}$$

pressure standard deviation

Analytical uncertainty response \rightarrow stochastic gas market design

• Enforce operational limits on state variables, e.g., nodal pressure upper bound

$$\mathbb{P}_{\xi}\left[\tilde{\pi}_{n}(\xi) \leqslant \overline{\pi}_{n}\right] \geqslant 1 - \varepsilon \ \Rightarrow \ r_{\varepsilon} \underbrace{\|\mathbf{X}[\check{\mathbf{G}}_{2}(\beta - \hat{\mathbf{G}}_{3}\gamma - \mathrm{diag}[1])]_{n}^{\top}\|}_{\text{pressure standard deviation}} \leqslant \overline{\pi}_{n} - \pi_{n}$$

 Variance penalty on state variables → mitigates uncertainty propagation, e.g., minimize pressure variance:

$$\min_{\boldsymbol{s}_n^\pi} \ \boldsymbol{c}_n^\pi \boldsymbol{s}_n^\pi \quad \text{s.t.} \quad \|\mathbf{X}[\tilde{\mathbf{G}}_2(\beta - \hat{\mathbf{G}}_3 \gamma - \text{diag}[1])]_n^\top \| \leqslant \boldsymbol{s}_n^\pi$$

$\textbf{Analytical uncertainty response} \rightarrow \textbf{stochastic gas market design}$

• Enforce operational limits on state variables, e.g., nodal pressure upper bound

$$\mathbb{P}_{\xi}\left[\tilde{\pi}_{n}(\xi) \leqslant \overline{\pi}_{n}\right] \geqslant 1 - \varepsilon \ \Rightarrow \ r_{\varepsilon} \underbrace{\|\mathbf{X}[\check{\mathbf{G}}_{2}(\beta - \hat{\mathbf{G}}_{3}\gamma - \mathrm{diag}[1])]_{n}^{\top}\|}_{\text{pressure standard deviation}} \leqslant \overline{\pi}_{n} - \pi_{n}$$

• Variance penalty on state variables \to mitigates uncertainty propagation, e.g., minimize pressure variance:

$$\min_{\boldsymbol{s}_n^{\pi}} \quad \boldsymbol{c}_n^{\pi} \boldsymbol{s}_n^{\pi} \quad \text{s.t.} \quad \|\mathbf{X}[\tilde{\mathbf{G}}_2(\beta - \hat{\mathbf{G}}_3 \gamma - \text{diag}[\mathbb{1}])]_n^{\top}\| \leqslant \boldsymbol{s}_n^{\pi}$$

 $\bullet \ \ \, \textbf{Uncertainty-} \, \& \, \textbf{variance-aware} \, \, \textbf{control policies} \rightarrow \textbf{stochastic SOCP} \, \textbf{gas market} \\$

Analytical uncertainty response → stochastic gas market design

Enforce operational limits on state variables, e.g., nodal pressure upper bound

$$\mathbb{P}_{\xi}\left[\widetilde{\pi}_{n}(\xi) \leqslant \overline{\pi}_{n}\right] \geqslant 1 - \varepsilon \ \Rightarrow \ r_{\varepsilon} \underbrace{\|\mathbf{X}[\check{\mathbf{G}}_{2}(\beta - \hat{\mathbf{G}}_{3}\gamma - \mathrm{diag}[1])]_{n}^{\top}\|}_{\text{pressure standard deviation}} \leqslant \overline{\pi}_{n} - \pi_{n}$$

 Variance penalty on state variables → mitigates uncertainty propagation, e.g., minimize pressure variance:

$$\min_{\boldsymbol{s}_n^{\pi}} \quad \boldsymbol{c}_n^{\pi} \boldsymbol{s}_n^{\pi} \quad \text{s.t.} \quad \|\mathbf{X}[\check{\mathbf{G}}_2(\beta - \hat{\mathbf{G}}_3 \gamma - \text{diag}[1])]_n^{\top}\| \leqslant \boldsymbol{s}_n^{\pi}$$

- Uncertainty- & variance-aware control policies → stochastic SOCP gas market
- Pricing based on conic duality \rightarrow agents have multiple revenue streams:
 - nominal balance
 - 2 network congestion
 - 3 recourse balance
 - variance regulation

DTU Wind & Energy Systems

Mitigating impacts of uncertainty propagation

Variance-agnostic control policies

Mitigating impacts of uncertainty propagation

Variance-agnostic control policies

Variance-aware control policies

Conclusions & perspectives

Outline

Introduction

Flexibility-centric electricity markets

Uncertainty propagation in energy systems

Conclusions & perspectives

Conclusions & perspectives

- A multi-period, multi-commodity conic market framework:
 - nonlinearities in assets, network, and uncertainty models
 - analytically proven satisfaction of economic properties

- A multi-period, multi-commodity conic market framework:
 - nonlinearities in assets, network, and uncertainty models
 - analytically proven satisfaction of economic properties
 - endogenous pricing of uncertainty and its mitigation
 - improvement in social welfare and feasibility guarantees for market outcomes

- A multi-period, multi-commodity conic market framework:
 - nonlinearities in assets, network, and uncertainty models
 - analytically proven satisfaction of economic properties
 - endogenous pricing of uncertainty and its mitigation
 - improvement in social welfare and feasibility guarantees for market outcomes
- Modeling & mitigation of uncertainty propagation among energy systems:
 - convexification of gas network dynamics under uncertainty
 - market-based mitigation of uncertainty impacts

- A multi-period, multi-commodity conic market framework:
 - nonlinearities in assets, network, and uncertainty models
 - analytically proven satisfaction of economic properties
 - endogenous pricing of uncertainty and its mitigation
 - improvement in social welfare and feasibility guarantees for market outcomes
- Modeling & mitigation of uncertainty propagation among energy systems:
 - convexification of gas network dynamics under uncertainty
 - market-based mitigation of uncertainty impacts
 - trade-offs between operations cost and uncertainty propagation impacts
 - conic pricing scheme incentivizes uncertainty & variance mitigation services

Conclusions & perspectives

Future research perspectives

- New market-clearing use cases and flexibility services
 - financial contracts for network flexibility
 - coordination between transmission & distribution systems for flexibility

Future research perspectives

- New market-clearing use cases and flexibility services
 - financial contracts for network flexibility
 - coordination between transmission & distribution systems for flexibility
- ② Generalization beyond SOC, e.g., semi-definite programming (SDP)
 - SDP relaxation of network flows
 - robustification of uncertainty models

Future research perspectives

- New market-clearing use cases and flexibility services
 - financial contracts for network flexibility
 - coordination between transmission & distribution systems for flexibility
- ② Generalization beyond SOC, e.g., semi-definite programming (SDP)
 - SDP relaxation of network flows
 - robustification of uncertainty models
- 3 From centralized coordination to decentralized or local coordination
 - local data sharing to improve payoffs and harness cross-carrier flexibility

Thank you for listening.

