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Abstract

Global energy decarbonization relies on electricity systems with large shares of uncertain and
variable renewable energy sources. Electrification of energy end uses such as transportation and
space heating are further increasing the stochasticity of demand. As a result, system operators must
procure additional operational flexibility to maintain a supply-demand balance in the presence
of production and consumption forecast errors. Beyond flexible resources within the electricity
system, short-term coordination among the various energy systems (e.g., electricity, natural gas, and
district heating), provides additional flexibility which remains largely untapped. Harnessing this
cross-carrier flexibility is appealing since it does not require large infrastructure investments, rather
relying on e↵ective coordination among the various actors in the energy systems. Furthermore,
establishing this coordination in a market-based framework is essential to harness cross-carrier
flexibility in a long-term and sustainable manner.

In this context, the objective of this thesis is to improve the market-based coordination among
energy systems at operational time scales to incentivize, steer, and harness cross-carrier flexibility
in competitive settings. The thesis contributes by developing new market-clearing frameworks
for energy systems, relying on stochastic optimization techniques. Moreover, new commodities
representing flexibility services, such as policy-based reserves, adjustment policies, and variance
minimization services, are proposed which contribute towards a cost-e�cient and reliable harness-
ing of cross-carrier flexibility. Using tools from mechanism design and game theory, the proposed
market frameworks are evaluated for their ability to satisfy the desired economic properties of
competitive markets, such as e�ciency, cost recovery, and revenue adequacy.

To account for the heterogeneous flexibility providers in the integrated energy system, this thesis
introduces a novel flexibility-centric electricity market-clearing framework. The proposed forward
market admits participants with second-order cone strategy sets and revisits the classical spatial
price equilibrium problem in a second-order cone programming context. Generalizing over
the existing linear programming-based electricity markets, conic markets enable participants to
accurately express the nonlinearities in their costs and constraints through conic bids, and the
network operators to model a physically-accurate flow of energy in the networks. The inclusion of
second-order cone constraints makes electricity markets uncertainty-, asset-, and network-aware,
thereby incentivizing heterogeneous flexibility providers across the integrated energy system to
participate in a market-based flexibility procurement. Under the assumption of perfect competition,
it is analytically proven that moving towards conic electricity markets does not incur the loss of
any desired economic properties inherent to the linear markets.

Harnessing cross-carrier flexibility is expected to propagate short-term uncertainty across the
energy system boundaries. This adversely impacts the reliability and price competitiveness
of the coupled energy systems due to network congestion and the resulting price spikes. To
address that, a new uncertainty-aware coordination framework is proposed to model and mitigate
the uncertainty propagation in coupled electricity and natural gas systems. Flexible assets in
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x ABSTRACT

both systems as well as the network flexibility provided by short-term storage of gas in pipelines
are employed in mitigating the adverse e↵ects of uncertainty propagating from the electricity to
the gas side. Convexification strategies are adopted to manage the non-convexities underlying
the gas system model in stochastic settings. An e�cient pricing scheme is developed which
endogenously considers uncertainty and the variance of state variables in the energy systems. In
contrast to deterministic coordination among energy systems, market participants are remunerated
(penalized) for their contribution to mitigating (aggravating) the adverse impacts of uncertainty.



Resumé

Den globale dekarbonisering er afhængig af elsystemer med store andele af usikre og variable
vedvarende energikilder. En øget elektrificering til f. eks. transport og rumopvarmning øger
efterspørgslen yderligere samt gør den mere stokastisk. Heraf følger det, at systemoperatører
er nødt til at fremska↵e yderligere fleksibilitet i den daglige operationelle drift for at opretholde
balancen mellem udbud og efterspørgsel som følge af prognoseusikkerheder af produktion of
forbrug. Ud over fleksible ressourcer i elnettet giver kortsigtet koordinering mellem de forskellige
energisystemer (f.eks. el, naturgas og fjernvarme) yderligere fleksibilitet, som er stort set uudnyttet
indtil nu. At udnytte denne fleksibilitet på tværs af operatører er tiltalende, da det ikke kræver store
infrastrukturinvesteringer, men snarere er afhængigt af e↵ektiv koordinering mellem de forskellige
aktører i energisystemerne. Desuden er etableringen af denne koordinering i en markedsbaseret
ramme afgørende for at udnytte fleksibiliteten på tværs af energisystemerne på en langsigtet og
bæredygtig måde.

I denne kontekst er formålet med denne afhandling at forbedre den markedsbaserede koordinering
mellem energisystemer på operationelle tidsskalaer for at tilskynde til, styre og udnytte tværgående
fleksibilitet i et markedsbaseret miljø. Specialet bidrager ved at udvikle nye teknikker til at
cleare markeder for energisystemer, baseret på stokastiske optimeringsteknikker. Desuden
foreslås nye produkter, der repræsenterer fleksibilitetsydelser, såsom regelbaserede reserver,
tilpasningsydelser og ydelser til minimering af varians, som bidrager til en omkostningse↵ektiv
og pålidelig udnyttelse af fleksibilitet på tværs af energisystemer. Ved brug af mekanisme
design og spilteori evalueres de foreslåede teknikker til at cleare markeder for deres evne til
at tilfredsstille de ønskede økonomiske egenskaber på konkurrenceprægede markeder, såsom
e↵ektivitet, omkostningsdækning og indtægtstilstrækkelighed.

For at tage højde for de heterogene fleksibilitetsudbydere i det integrerede energisystem, intro-
ducerer denne afhandling en ny fleksibilitetscentreret ramme for clearing af elmarkedet. Det
foreslåede forward marked tillader deltagelse med strategier af konisk form af andenordens grad,
og det klassiske prisligevægtsproblem i en andenordens konisk programmerings kontekst bliver
revideret. Ved at generalisere over de eksisterende elmarkeder baseret på lineær programmering
gør markeder baseret på konisk programmering deltagerne i stand til nøjagtigt at udtrykke
ikke-lineariteter i deres omkostninger og begrænsninger gennem koniske bud, og netværksoper-
atørerne kan modellere en nøjagtig fysisk strøm af energi i nettet. Inkluderingen af andenordens
koniske begrænsninger gør elmarkederne usikkerheds-, aktiv- og netværksbevidste, hvilket giver
incitament til heterogene fleksibilitetsudbydere på tværs af det integrerede energisystem til at
deltage i markedsbaserede fleksibilitetsydelser. Under antagelsen om perfekt konkurrence er det
analytisk bevist, at bevægelse mod koniske elmarkeder ikke medfører tab af ønskede økonomiske
egenskaber, der er forbundet med de lineære markeder.

Udnyttelse af tværgående fleksibilitet i energisystemet forventes at propagere kortsigtet usikkerhed
på tværs af energisystemets grænser. Dette påvirker de koblede energisystemers pålidelighed
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xii RESUMÉ

og priskonkurrenceevne negativt på grund af overbelastning af nettet og de deraf følgende
prisstigninger. For at imødegå dette foreslås en ny usikkerhedsbevidst koordinationsramme
for at modellere og afbøde præpareringen af usikkerhed i koblede el- og naturgassystemer.
Fleksible aktiver i begge systemer såvel som netværksfleksibiliteten ved korttidsopbevaring af
gas i rørledninger bruges til at afbøde de negative virkninger af usikkerhed, der forplanter sig fra
elektriciteten til gassiden. Konvekse strategier er vedtaget for at håndtere de ikke-konveksiteter, der
ligger til grund for gassystemmodellen i et stokastisk miljø. Der udvikles en e↵ektiv prissætning,
som endogent tager højde for usikkerhed og variansen af tilstandsvariable i energisystemerne.
I modsætning til deterministisk koordinering mellem energisystemer bliver markedsdeltagere
honoreret (stra↵et) for deres bidrag til at afbøde (forværre) de negative virkninger af usikkerhed.



CHAPTER1
Introduction

1.1 Context and motivation

To address the challenge of climate change, countries are reducing their dependence on fossil
fuels. This global energy transition is supported primarily by the increasing shares of uncertain
and variable renewable energy sources (RES), such as wind and solar power production, in the
electricity (or electric power) system [1]. Meanwhile, energy end uses, e.g., transportation and
space heating, are undergoing electrification, which not only increases the volume of electricity
demand but also its uncertainty and variability across time and space. Stochastic production
and consumption must match in real-time to ensure a continuous supply-demand balance in the
electricity grid. Any imbalance, if left uncorrected, may lead to large-scale cascading blackouts
[2]. An adaptive, flexible operation of the electricity system is therefore crucial to achieving CO2

emission reduction targets while ensuring reliable supply to consumers. This motivates electricity
system operators to procure additional operational flexibility1 to maintain the supply-demand
balance in presence of the errors associated with production and consumption forecasts.

As a parallel development, various energy systems, such as electricity, natural gas, and district
heating (or cooling) systems are becoming interdependent with increasing physical, operational,
and economic interactions among them. Leveraging the synergies from this integration of energy
systems has recently received significant attention as a source of operational flexibility [4, 5]. These
synergies arise from the flexible operation of so-called boundary agents, who operate at the interface
of the energy systems. Examples of such boundary agents include gas-fired power plants (using
natural gas as fuel to produce electricity), combined heat and power (CHP) plants (typically,
burning gas to produce heat and electricity), heat pumps (using electricity to provide heating), and
the upcoming power-to-gas units (using electricity to produce hydrogen or natural gas). Energy
conversion enabled by the flexible operation of boundary agents also allows the short-term storage
of natural gas in pipelines and of hot (cold) water in the heating (cooling) supply networks. This
form of network flexibility can be utilized to balance variability from RES in the electricity system.

In general, harnessing the existing cross-carrier flexibility2 is appealing compared to investing in new
flexibility options within the electricity system [6], such as setting up large-scale energy storages or
expanding the transmission grids, or building new flexible power plants. Coordination among
energy systems in the short-term (for instance, in the day-ahead of operation time scale) unlocks a
significant amount of flexibility for the electricity system at low capital investment on infrastructure
[7]. A holistic approach towards the coordinated operation of these energy systems is therefore
regarded as the next step in their evolution, transforming them from the current practice of systems
operating in silos towards an integrated energy system [8, 9].

1In the context of this thesis, operational flexibility, or simply flexibility, refers to the capability of a system to modify
its output or state in response to a signal. In electricity systems under uncertainty, the quantification of forecast errors
(estimated or realized) could be such a signal. See [3] for a discussion on the various definitions of flexibility in the literature.

2Operational flexibility from energy system integration is termed as ‘cross-carrier flexibility’, referring to its origin
from energy systems involving energy carriers other than electricity, e.g., natural gas, hot or cold water.

1



2 CHAPTER 1. INTRODUCTION

1.2 Challenges in harnessing cross-carrier flexibility

To leverage energy system integration for flexibility, physical coupling among the energy systems
should be supported by coordinated planning and control [10–12] as well as coordination among
the market structures [7].

Currently, markets in the various energy systems operate independently and asynchronously, i.e.,
energy products are traded as commodities in separate, pool-based wholesale forward markets
which operate with di↵erent time scales and temporal resolutions. These forward markets ensure
the security of energy supply and price competitiveness. Apart from the physically delivered
commodities, long-term financial products are traded in futures markets, wherein the inherent
risks and price volatility can be mitigated via hedging. This thesis focuses on the short-term
wholesale forward markets of energy, which are typically cleared 12 to 36 hours ahead of the actual
delivery of energy, i.e., at the day-ahead stage3. At these time scales, the markets are cleared under
uncertainty about the production and consumption forecasts. In the specific context of electricity
markets, procuring operational flexibility, e.g., cross-carrier flexibility, is crucial to the mitigation of
uncertainty during the subsequent real-time operation stage.

Considering the multiple uncoupled markets to which boundary agents are exposed, market-based
coordination among energy systems exists via the trading and operating strategies of such agents.
However, such ad-hoc, agent-driven coordination is neither cost-optimal for the integrated system
nor does it allow for a reliable harnessing of cross-carrier flexibility. Moreover, due to the sequential
and separate nature of the energy markets, limited information exchange among the energy markets
leads to a potential misrepresentation of the actual costs and constraints faced by the agents.
Therefore, the cross-carrier flexibility potential is either over-estimated or remains under-utilized.
Market mechanisms and products that enable market-based coordination among the actors in the
various energy systems are crucial for optimally harnessing the available cross-carrier flexibility in
a long-term and sustainable manner [19].

To that end, this thesis addresses some of the challenges associated with establishing market-
based coordination among energy systems at operational time scales. Establishing market-based
coordination faces challenges on technical, operational, economic, and regulatory fronts.

First, technical challenges arise from the mathematical complexity of modeling the energy system
assets, especially while considering uncertainty. This is further exacerbated by the propagation
of short- and long-term uncertainty among the energy systems, due to their interdependencies
[20]. Second, there are operational challenges rooted in the di↵erent flow dynamics of energy
vectors within the various networks, i.e., gas or water molecules and electrons. This makes the
reliable operation of integrated energy systems a complex control problem spread over multiple
geographical and temporal scales [7]. At the same time, the slower flow dynamics of gas and
heat networks as compared to the electricity system enables these networks to provide network
flexibility in the form of short-term energy storage [21, 22]. Third, there exist economic challenges
in establishing e�cient markets while taking the preferences and operational constraints of a
variety of market actors into account. Thus, technology-agnostic and non-discriminatory markets,
which do not favor any specific actor (or group of actors) based on their asset types, location, etc.,

3Interested readers are referred to [13] for a comprehensive introduction to electricity markets, while [14] provides the
specific context of market integration of weather-dependent RES. Introduction to the natural gas system and markets can
be found in [15, 16] and [17] provides an introduction to the district heating market in the Danish context. A discussion on
the sequence of energy market clearings can be found in [18, Chapter 2].
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Figure 1.1: Illustration of the challenges in harnessing cross-carrier flexibility and the research
directions (RD1 and RD2) adopted in this thesis to address them. RD1: Flexibility-centric electricity
markets, RD2: Uncertainty-aware coordination among energy systems.

are necessary yet challenging to achieve [23, 24]. Finally, regulatory challenges stem from the
historically independent operations of these energy systems with limited coordination among
the system operators and markets. While this operational paradigm continues to evolve with the
coupling of energy systems due to the boundary agents, existing (and foreseen) regulatory barriers
force these agents to make decisions with limited information.

Overcoming these various challenges with well-designed market-based coordination schemes
paves the way to (i) increase the economic e�ciency of the overall integrated energy system, (ii)
enable the market actors to meet their operational goals, and eventually, (iii) lead to the right price
signals for sustainable business models to unlock cross-carrier flexibility. To achieve these goals, a
rethinking of existing market structures is necessary. Considering the multidimensional challenges
involved, this thesis adopts a multidisciplinary research approach. In particular, concepts from
energy system modeling are combined with control theory, stochastic programming, mechanism
design, and game theory to develop and analyze new market-clearing frameworks and products
to improve the market-based coordination for harnessing cross-carrier flexibility.

1.3 Research directions

As illustrated in Figure 1.1, this thesis presents the findings of two research directions addressing
the aforementioned challenges. Focusing on the technical and economic challenges, the first
direction, RD1, rethinks electricity markets such that flexibility is unlocked by steering the
operation of heterogeneous market actors, i.e., those facing a variety of nonlinear physical costs
and constraints. The second research direction, RD2, addresses the technical and operational
challenges. A methodology is proposed for uncertainty-aware coordination between the electricity
and natural gas systems, focusing on endogenous modeling of uncertainty and its propagation via
boundary agents. A pricing scheme is developed to provide flexible agents with e�cient financial
remuneration for mitigating uncertainty. The following elaborates on these research directions.

1.3.1 Flexibility-centric electricity markets

Since the liberalization of the electricity sector, electricity markets in many countries typically have
sought a spatial price equilibrium4 by solving a linear programming (LP) market-clearing problem.

4A spatial price equilibrium is a set of commodity prices and trade flows that satisfy partial equilibrium conditions
over a network while accounting for the transportation costs and constraints associated with the trade flows [25].



4 CHAPTER 1. INTRODUCTION

When network constraints are fully taken into account, solutions to this problem include optimal
production and consumption quantities and the spatially-di↵erentiated nodal energy prices, also
known as locational marginal prices (LMPs) [26, 27].

However, the LP framework is inadequate to match the following developments in electricity
systems under the green transition. First, a majority of supply bids in the electricity markets are
expected to arise from weather-dependent RES which incur a near-zero marginal production cost
and are non-dispatchable, i.e., their real-time production can not be planned with a high degree
of certainty [13, 28]. Consequently, short-term electricity markets are exposed to uncertainty,
which should be endogenously considered in the market-clearing problem with more advanced
uncertainty modeling tools than those available within the LP framework. Second, mitigating
uncertainty requires a market-based procurement of operational flexibility, e.g., cross-carrier
flexibility, from a variety of flexibility providers within the integrated energy system. These
flexibility providers largely have nonlinear operational costs and constraints. Approximating
these costs and constraints by linear functions renders it unattractive for these agents to provide
flexibility. Third, with the inexact linear approximations that model power flows in the electricity
network, markets may procure flexibility that cannot be physically delivered. This may lead to
increased curtailment of RES and in the worst cases, risk disturbing the supply-demand imbalance.

Extending the spatial price equilibrium beyond the LP framework to more general convex
optimization frameworks overcomes these limitations to a great extent. First, it enables physically
accurate modeling of costs and constraints of the assets and energy flows in the networks comprising
the integrated energy system. For instance, recent work by [29] extends electricity markets by the
inclusion of quadratic costs faced by flexible power producers. Similarly, [30] proposes a pricing
scheme for electricity networks considering a physically accurate nonlinear model for flows in
electricity networks. Second, the extension beyond the LP framework provides opportunities to
introduce a more accurate characterization of uncertainty and risk within the market-clearing
framework. In that context, recent works [31, 32] propose stochastic electricity markets, involving
nonlinear constraints, which outperform existing stochastic market clearing alternatives within the
LP framework [33–35].

As reflected by this growing research focus (see, e.g., [36] for a recent comprehensive survey), it is
clear that the prevalent LP-based electricity markets should evolve to meet future energy system
needs. This evolution should be guided by several key considerations. Electricity markets do
not need to fundamentally drift away from the goal of seeking a spatial price equilibrium, rather
should be broadened to reflect the physical realities of the market participants and the network
[23]. Existing economic interpretations and desired properties of the spatial price equilibrium
must be retained while the electricity market design is extended to allow uncertainty modeling
and mitigation in a cost-e�cient way. Furthermore, electricity markets must evolve such that
flexibility provision is rewarded appropriately [24]. This is crucial since revenues from flexibility
products and services are expected to become more prominent for the market participants, as
the average value of LMPs is suppressed while their volatility increases with higher shares of
weather-dependent RES [37]. Prior works [29–32] adopt a limited view of addressing only one
of the previously-discussed shortcomings of LP-based markets, lacking a broader rethinking of
electricity markets to make them future-proof.

To this end, one of the research goals of this thesis is to propose a flexibility-centric electricity
market-clearing framework. Such a market framework admits an endogenous consideration of
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uncertainty and provides non-discriminatory access to a wide variety of heterogeneous flexibility
sources within the integrated energy system to mitigate it. At the same time, the optimal production
and consumption quantities are obtained while considering an accurate model for the flow of
electricity in the network required to fulfill the energy and flexibility trades.

1.3.2 Uncertainty-aware coordination among energy systems

Harnessing operational flexibility from market-based coordination of integrated energy systems
leads to increased interdependence. On the one hand, this necessitates that energy markets are
cleared while taking system-coupling constraints into account. Recent research works have focused
on that, e.g., clearing the electricity market while ensuring gas network constraints are met [38] or
clearing the heat market while considering the flexibility needs of the coupled electricity system
[39]. On the other hand, the interdependence also propagates short-term uncertainty from the
electricity system to the coupled natural gas and district heating systems. This is evident from
the increasing volumes of natural gas traded in short-term forward markets such as Gaspoint
Nordic as opposed to the conventional long-term supply contracts, typical to the gas industry [40].
Further evidence is from China where electricity-agnostic heat dispatch of CHPs leads to constraint
violations in the electricity system and curtailment of wind power production by up to 20% [41].

In particular, natural gas and electricity systems have become highly coupled due to the recent
proliferation of gas-fired power plants, driven by their fast commissioning along with access to
cheap gas supply5 [43, 44]. Gas-fired power plants have a lower CO2 footprint and emit less
particulate matter compared to conventional coal power plants while having the ability to rapidly
change their production set points to provide operational flexibility. Consequently, natural gas is
regarded as a ‘transition fuel’ in the evolving generation mix on the path towards decarbonization
of electricity systems [45]. However, in providing operational flexibility to the electricity system,
the natural gas system increasingly faces challenges caused by the short-term uncertainty in gas
withdrawals [20]. Specifically, the gas demand from gas-fired power plants di↵ers from traditional
gas demands due to its time-varying and unpredictable nature. This leads to an increase in the
frequency of network congestion and price spikes, thereby reducing the a↵ordability of gas and
reliability of the natural gas system [46].

The harnessing of cross-carrier flexibility should therefore be augmented by the consideration
of uncertainty propagation among energy systems. Studying uncertainty propagation entails
several aspects. First, the analytical and computational issues arising from nonlinearities and
non-convexities inherent to the asset and network models of energy systems should be resolved.
Second, probabilistic methods should be deployed to model various sources of uncertainty within
the integrated energy system [47]. Third, recourse actions necessary to mitigate the uncertainty
should be quantified and allocated among the flexibility providers. Next, the flexibility provided
should be remunerated in a market-based, economically-e�cient manner to ensure a reliable
operation in the long term [48]. Finally, the impact of uncertainty propagation on the variance
of state variables of the coupled network should be quantified, e.g., how does unpredictable gas
uptake needed for the flexible operation of gas-fired power plants translate to changes in flow
rates and nodal pressures in the gas system. Prior works, e.g., [49–51], have largely neglected these
crucial aspects of uncertainty propagation across the energy system boundaries.

5Interestingly, as of March 2022, various geo-political reasons combined with a series of market trends and mishaps
have led to historically high natural gas prices [42]. Therefore, some of the statements made in this thesis need rethinking
based on future developments in this context.
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Therefore, the second research goal of this thesis is to develop a methodology to steer the available
cross-carrier flexibility while accounting for the uncertainty propagation among the energy systems.
This involves developing uncertainty-aware models for flexibility providers, studying the impact
of uncertainty propagation on operational constraints, and finally, developing market-clearing
mechanisms that endogenously reward uncertainty and variance mitigation.

1.4 Scientific contributions

The primary objective of this thesis is to address challenges associated with harnessing cross-carrier
flexibility by improving market-based coordination among energy systems. Aligned with the
research directions introduced in Section 1.3, this is enabled (i) by proposing and analyzing a novel
flexibility-centric design of electricity markets in [Paper A] and [Paper B], and (ii) by developing a
new methodology for modeling and mitigating uncertainty propagation among the integrated
energy systems in [Paper C] and [Paper D].

Towards flexibility-centric markets, [Paper A] proposes a new multi-period and multi-commodity
forward electricity market-clearing framework which admits heterogeneous market participants
with second-order cone (SOC) strategy sets. The resulting market-clearing problem takes the form
of a second-order cone programming (SOCP) problem, which is a generalization of classical LP
problems, within the convex optimization realm. Admitting SOC strategy sets in the market enables
participants to express the SOC-representable nonlinearities in their costs and constraints. The
multi-period market allows flexibility providers to reflect temporally-coupled costs and constraints
in their market participation strategies. Multiple commodities in the market move the trades
beyond electricity, i.e., towards endogenous consideration of a variety of possible flexibility services
as additional commodities. The proposed SOCP-based electricity market-clearing framework
results in scientific contributions from various perspectives.

From an operational perspective, the generic nature of the proposed market framework provides
non-discriminatory access for flexibility providers within the integrated energy system. Moreover,
admitting SOC constraints in the market-clearing problem enables a physically realistic representa-
tion of flows in the energy networks. Physical equations governing the steady-state flow of energy,
when represented by SOC constraints, typically improve over the linear approximations used in
LP-based markets [52]. Leveraging the multi-commodity feature, system operators can introduce
new flexibility products tailored to e↵ectively harness various kinds of operational flexibility, as
required to mitigate the adverse impacts of uncertainty during real-time operation. From a market
design6 perspective, the proposed market-clearing framework is the first work to study spatial price
equilibrium in a conic optimization framework. This is relevant to competitive settings beyond
energy markets that involve physical or non-physical systems, where cost- and constraint-related
nonlinearities are currently handled by linear approximations. In addition, desired economic
properties of the market equilibrium, e.g., existence, uniqueness, market e�ciency, cost recovery
for the market participants, and revenue adequacy in the market, are analytically proven to hold
under the assumption of perfect competition [27]. This demonstrates that the economic principles
and properties underlying the existing LP-based markets are retained while the electricity markets
seek a conic spatial price equilibrium.

6In the context of this thesis, market design refers to auction-based marketplaces involving non-cooperative players who
make simultaneous decisions under perfect but incomplete information about the game underlying the market clearing
[53]. This implies that players know their own strategy sets and cost functions perfectly, however the costs and strategy
sets of their competitors are unknown to them [54]. In this setting, classical concepts from mechanism design literature,
e.g., [55, 56], are adopted in the thesis to evaluate the proposed market-clearing frameworks.
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Considering the relevance of endogenous pricing of uncertainty, [Paper B] studies a specific variant
of the general market framework proposed in [Paper A]. In [Paper B], a day-ahead stochastic
electricity market-clearing mechanism is proposed wherein energy and flexibility in the form of
operating reserves are procured jointly. Compared to the current practice of sequential, separate
markets for procuring energy and flexibility adopted by a majority of electricity markets [57], the
proposed co-optimization leads to a lower expected cost of system operation while providing
guarantees for reliable operation despite the uncertain RES production. These cost savings arise
from an optimal dimensioning of the amount of flexibility procured, enabled by considering
uncertainty endogenous to the joint market clearing.

A new class of flexibility products, called policy-based reserves based on a�ne control policies [58] are
studied. These policies are rules, agreed at the day-ahead market stage, that govern how flexibility
providers respond to forecast error realizations during or close to real-time operation. Contrary to
the capacity-based reserves, policy-based reserves, when considered in the joint market-clearing
setting, tightly couple the flexibility provider’s actual operational constraints with the delivery of
the flexibility service. Consequently, the flexibility procured is priced dynamically, consistent with
actual flexibility needs in the electricity system. While a market for energy and reserves based on
a�ne policies within a robust optimization framework was proposed in [59], [Paper B] optimizes
these policies in a chance-constrained optimization framework [60]. Employing chance-constrained
optimization enables analytical proofs of the desired economic properties, built on mathematical
tools from game theory and equilibrium analysis [61, 62].

Numerical results in [Paper A] and [Paper B] illustrate how the market redesign, coupled with the
policy-based reserves, equip the electricity system operator with a tool to procure a risk-adjusted
amount of flexibility from various flexibility providers in the integrated energy system. However,
the adaptive response by agents in delivering flexibility leads to the propagation of short-term
uncertainty across the energy system boundaries, which is addressed in [Paper C] and [Paper D].

Towards studying uncertainty propagation in integrated energy systems, [Paper C] develops a
stochastic co-optimization of electricity and natural gas systems. In addition to the flexibility
providers in both energy systems, network flexibility from short-term storage of gas in the
pipelines of the gas network, i.e., linepack flexibility, is considered. Optimal recourse actions in
the form of a�ne control policies are allocated such that the state variables in the gas system,
i.e., nodal pressures and flows in pipelines, are adjusted to e↵ectively harness the linepack
flexibility. This ensures the availability of fuel for the withdrawals by gas-fired power plants to
mitigate the uncertainty from RES in the coupled electricity system. The study of uncertainty
propagation is modeled in a distributionally-robust chance-constrained optimization framework,
which generalizes chance-constrained optimization by providing stronger reliability guarantees
against unknown distributions. While a co-optimization of electricity and gas systems is not
practical due to the regulatory barriers, the framework developed is relevant to system operators
since it can be regarded as an ideal benchmark for market-based coordination among energy
systems focused on uncertainty propagation.

From a methodological perspective, [Paper C] develops novel convexification approaches for
nonlinear and non-convex flow dynamics of the gas network under uncertainty. These approaches
are required to attain computational tractability of the stochastic co-optimization problem under
the nonlinear and non-convex constraints. Out-of-sample simulations illustrate the trade-o↵ faced
by system operators between the expected day-ahead cost of operation and the robustness of the
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solution against adverse uncertainty realizations. Furthermore, state variables in the gas system
were found particularly susceptible to constraint violations that worsen the relaxation errors
induced by the convexification step. Thus, establishing a strong analytical dependency between
the random forecast errors and the response of the gas system is crucial to mitigate their e↵ects.

To that end, [Paper D] establishes a�ne control policies such that gas system state variables
admit closed-form analytical expressions involving nominal and recourse components. The
recourse components depend on the actions of the controllable flexibility providers, i.e., gas
suppliers and active pipelines hosting compressors or valves that provide pressure regulation.
A linearization strategy is adopted to address the non-convexities in the gas system as opposed
to convex relaxations in [Paper C]. The closed-form analytical characterization of state variables
developed in [Paper D] results in scientific contributions from di↵erent perspectives.

From an operational perspective, system operators are provided with the confidence that the
gas network state remains feasible during the real-time operation stage with a very high (preset)
probability. Real-time constraint feasibility of the gas system is guaranteed, up to the quality of
forecasts available at the day-ahead stage. A priori worst-case performance metrics defining the
upper bounds on feasibility errors are provided. Further, analytical expressions for state variables
enable a variance penalization scheme so that system operators can trade o↵ the expected cost of
operation with the variance of the state variables anticipated due to the uncertainty propagation.

From a market design perspective, a market-clearing framework for gas systems is developed, which
is not only uncertainty-aware but also variance-aware7. In contrast to prevalent deterministic
gas markets, the endogenous consideration of uncertainty and variance leads to an e�cient
pricing scheme for flexibility services mitigating these economic externalities. Consequently,
market participants are remunerated (or penalized) for their contribution towards mitigating (or
aggravating) uncertainty and variance. Leveraging a combination of LP and SOCP duality theory,
the market-clearing outcomes are analytically proven to satisfy the desired economic properties,
cost recovery and revenue adequacy, in expectation.

1.5 Thesis structure

This thesis introduces the main concepts underlying the research directions pursued and summa-
rizes the contributions of the scientific publications during the Ph.D. project. While Chapters 2-3

summarize the methodology and scientific contributions, the scientific publications attached in the
Appendix provide details on relevant literature, methodology, and simulation results.

Focusing on the first research direction, Chapter 2 discusses the contributions of this thesis towards
harnessing cross-carrier flexibility enabled by flexibility-centric electricity markets. The first part
introduces a general energy market-clearing problem and its relation to spatial price equilibrium.
The need to move beyond linear markets for energy systems is motivated, considering the
nonlinearities inherent to the asset and network models in these systems. The second part discusses
the multi-period and multi-commodity conic electricity market, highlighting the methodological
and theoretical contributions of [Paper A]. The last part discusses numerical results from [Paper A]
and [Paper B] in the context of a specific variant of the general conic market, a two-commodity
uncertainty-aware electricity market that entails endogenous pricing of uncertainty.

7While uncertainty-awareness refers to the mitigation of uncertain gas withdrawals by gas-fired power plants,
variance-awareness refers to the ability to control the variance of state variables in the gas system with high fidelity.
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Addressing the second research direction, Chapter 3 presents the framework developed for
studying uncertainty propagation from the electricity to the natural gas systems. The first part of
the chapter introduces a general nonlinear and non-convex framework for studying uncertainty
propagation in a coupled electricity and natural gas system in a centralized coordination paradigm.
The challenges associated with studying uncertainty propagation are highlighted. The second
part summarizes the methodological and numerical contributions of [Paper C] in developing and
validating the convexification strategies which enable a tractable reformulation of the original
non-convex problem. The last part discusses the contributions of [Paper D] in establishing a gas
network response model to the uncertainty propagated and introduces an e�cient pricing scheme
for mitigation of uncertainty and variance of gas system state variables.

Chapter 4 concludes the thesis, summarizing its main contributions and discussing future research
directions.

Notation: In the interest of notational coherence, mathematical formulations in this thesis have
been adjusted compared to the original formulations in the scientific publications. The set of
real and non-negative real numbers are denoted by R and R+. Upper case alphabets with a
script typeface, such as A, represent sets, while vectors are denoted by lower case boldface and
matrices by upper case boldface alphabets. For a vector v, operator v€ denotes its transpose, ÎvÎ

denotes its Euclidean norm and diag(v) returns a diagonal matrix with vector v as the leading
diagonal. The k-th element of vector v is retrieved as the scalar vk whereas the operator [·]k extracts
the k-th element of a vector expression. 0 and 1 are vectors of zeros and ones. For a matrix
M œ Rp◊q, [M ](:,k) œ Rp retrieves its k-th column while [M ](k,:) œ R1◊q retrieves its k-th row.
The operator tr(M) returns the trace of the matrix M , while the expression M º 0 indicates its
positive-definiteness. Arithmetic operators 6, =, and > on vectors and matrices are understood
element-wise. Operation ¶ is the element-wise product while ¢ denotes the Kronecker product.

1.6 List of publications

The relevant publications which are summarized in this thesis are listed as follows:

[Paper A] A. Ratha, P. Pinson, H. Le Cadre, A. Virag and J. Kazempour, “Moving from Linear to Conic
Markets for Electricity,” submitted to European Journal of Operational Research, (under review,
first round), 2021.

[Paper B] A. Ratha, J. Kazempour, A. Virag and P. Pinson, “Exploring Market Properties of Policy-based
Reserve Procurement for Power Systems,” in 2019 IEEE 58th Conference on Decision and Control
(CDC), 2019, pp. 7498-7505, doi: 10.1109/CDC40024.2019.9029777.

[Paper C] A. Ratha, A. Schwele, J. Kazempour, P. Pinson, S. Shariat Torbhagan and A. Virag, “A�ne
Policies for Flexibility Provision by Natural Gas Networks to Power Systems,” in Electric
Power Systems Research, Volume 189, 2020, doi: 10.1016/j.epsr.2020.106565.

[Paper D] V. Dvorkin, A. Ratha, P. Pinson and J. Kazempour, “Stochastic Control and Pricing for Natural
Gas Networks,” in IEEE Transactions on Control of Network Systems (Early Access), 2021, doi:
10.1109/TCNS.2021.3112764.

The following publications have also been prepared during the Ph.D. study, but have been omitted
from the thesis because they are not directly related to the primary objective.
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[Pub. E] A. Ratha, P. Pinson, H. Le Cadre and J. Kazempour, “Statistical Learning in Strategic
Environments: An Energy Market Perspective,” (Working paper).

[Pub. F] Y. Werner, A. Ratha and J. Kazempour, “Network-Aware Procurement of Reserves in
Electricity Markets” (Working paper).



CHAPTER2
Flexibility-centric Electricity

Markets

This chapter presents the contributions of this thesis towards proposing a novel electricity market-
clearing framework based on SOC constraints. Including SOC constraints improve uncertainty-,
asset-, and network-awareness of the electricity market, which among other advantages within the
electricity system, helps unlock cross-carrier flexibility. Using an illustrative energy market-clearing
problem, Section 2.1 motivates the move beyond LP-based markets by highlighting nonlinearities
and non-convexities in energy systems. Leveraging the market framework developed in [Paper A],
Section 2.2 formulates a multi-period, multi-commodity conic electricity market and provides
theoretical results associated with the market equilibrium. An uncertainty-aware variant of the
general conic market is presented in Section 2.3 and numerical results based on [Paper A] and
[Paper B] are discussed. Finally, Section 2.4 discusses future research perspectives.

2.1 Beyond linear markets for energy systems

Energy markets seek to achieve a spatial price equilibrium with optimal prices and trade flows
that satisfy partial equilibrium conditions over a network [63, 64]. Historically, such problems
rely on LP theory to derive the marginal prices [65], leading to linear energy markets. However,
the LP framework is limiting in energy systems as it fails to accurately represent the operational
characteristics of physical assets and the network. These limitations are highlighted in the following
via an illustrative market-clearing problem.

Consider a pool-based energy market with market participants (buyers and sellers) collected in a
set I = {1, 2, . . . , I}, where I > 2. Let qi œ Qi denote the decision vector of the i-th participant
drawn from a strategy set Qi. Let each participant incur a cost function ci(qi), increasing in
qi. Assume a sign convention: ci(qi) > 0 applies to sellers, indicating a convex cost of selling,
whereas ci(qi) 6 0 applies to buyers, indicating a concave utility of buying. In a two-sided auction
framework, price-quantity sell o↵ers and buy bids are matched by an auctioneer to maximize
the social welfare, contingent on the spatial constraints1. In its abstract form, this network-based
market clearing is given by a centrally-solved optimization problem

min
qi

ÿ

iœI
ci(qi) (2.1a)

s.t. qi œ Qi, ’i (2.1b)

fM({qi}iœI) œ F
M (2.1c)

fN({qi}iœI) œ F
N, (2.1d)

1Not all energy markets involve such two-sided auctions. For instance, due to limited competition and the critical
nature of the heat supply, the heat market in the Greater Copenhagen area is organized based solely on least-cost dispatch
considering technical limits of the heat producers and the district heating network, such that heat producers compete on
production costs while the retail prices are predetermined and fixed [66].
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where a market operator (acting as the auctioneer) minimizes social disutility (or maximizes social
welfare) in (2.1a) subject to the individual constraints of each participant (2.1b) and coupling
constraints (2.1c) - (2.1d) involving decision vectors of multiple participants.

The continuous, vector-valued functions fM(·) and fN(·) comprising the coupling constraints
ensure that the allocations {qi}iœI are in feasible sets F

M and F
N, respectively. The function fM(·)

typically encodes information about the location of participants within the network and their
preferences on quantities to trade. Accordingly, the set F

M contains allocations {qi}iœI that are
market-feasible, implying that the market-clearing conditions, e.g., supply-demand balance, are
satisfied. The function fN(·) transforms the participant-specific quantities bought or sold to physical
flows in the network required to fulfill the trades during physical delivery. Therefore, the set F

N

contains allocations that are network-feasible, i.e., allocations resulting in energy flows in the network
that remain within the network limits. Such network limits include flow capacities, physical
bounds on state variables, network operator’s safety limit prescriptions, etc. While marginal prices
are determined from shadow prices associated with (2.1c), shadow prices associated with (2.1d)
can be interpreted as prices that arise from reaching network limits2. In energy systems, the set of
network-feasible allocations F

N is generally larger than the set of market-feasible allocations F
M.

As a result, possibly multiple optimal solutions to problem (2.1) are obtained contingent to market
feasibility in (2.1c) and a minimum of social disutility (2.1a) subject to individual constraints (2.1b).

Convexity of the centrally-solved market-clearing problem (2.1) is highly desirable since it enables
deriving globally optimal prices and quantities leveraging Lagrangian duality [68, Chapter 5] as
opposed to locally optimal solutions. Economic interpretations for such pool-based markets arise
from the equivalence of the optimization problem (2.1) with a spatial price equilibrium involving
non-cooperative players [69]: market participants, a network operator, and a market operator3. In
classical game theory, the existence of Nash equilibria in such equilibrium problems is given under
common assumptions of convexity and compactness of the players’ strategy sets and continuity of
their cost functions [71]. With the optimization-equilibrium problem equivalence, the uniqueness
of the market-clearing outcomes, i.e., optimal quantities and prices, are conditioned on the strict
convexity of cost functions comprising the objective function (2.1a) [72, Chapter 16]. In energy
systems, satisfying these assumptions requires convex approximations and relaxations due to the
nonlinearity and non-convexity of the physical characteristics of participants and the network4.

In the specific case of the electricity system, based on a number of simplifying assumptions, many
countries adopt an LP-based market-clearing problem to obtain the optimal quantities and prices.
However, the limitations due to these assumptions are now exacerbated in electricity systems
under the green transition, wherein appropriately harnessing and remunerating flexibility is
essential. In the context of problem (2.1), these assumptions and their limitations in addressing the
nonlinearities and non-convexities faced by electricity markets are discussed.

2For instance, [Paper D] employs the gas network operator’s prescribed variance criteria to obtain a price for high
variance of state variables (nodal pressures and gas flows) in the network. See [32, 67] for applications of such variance
minimization technique to power flows in electricity network.

3The separation of roles of the network operator and the market operator may be virtual since energy markets around
the world adopt various organizational structures to assign these roles. For instance, electricity markets in the United
States adopt a consolidation of these roles into an independent system operator (ISO), see e.g., [70], whereas markets in
Europe typically have separate entities responsible for operating the network and the market, respectively.

4As an example, the steady-state flow of gas in pipelines is governed by non-convex Weymouth equations. However,
in the interest of simplicity, short-term trades in natural gas markets rely on simple entry-exit models in the EU that ignore
the network constraints and transportation path [15].
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2.1.1 Nonlinearities and non-convexities in electricity markets

The nonlinearities and non-convexities are highlighted below from the perspective of market
participants, modeling energy flow in the network, and accounting for uncertainty.

Participants cost functions and strategy sets

Market participants in (2.1) face cost (utility) functions ci(·) which are typically modeled as quadratic
functions, given the operational characteristics of the physical assets producing (consuming) energy
[13]. Ramping costs incurred from frequent adaptations in the operational state to provide flexibility
are also modeled as quadratic functions [29]. In LP-based electricity markets, these costs and
utilities are usually accounted for via linear or piecewise-linear approximations. Such linear
approximations may fail to fully capture the costs of these participants, thereby deterring them
from market participation and flexibility provision. Cost functions aside, an LP-based market only
admits participants with polyhedral strategy sets Qi in (2.1b). Whereas, the feasible operating
regions of various assets are typically nonlinear. When an inner (outer) polyhedral approximation
is enforced, their feasibility sets are shrunk (expanded), thereby undermining (over-estimating)
the amount of flexibility that can be harnessed. Apart from nonlinearities, non-convexity of Qi

also arises from integrality constraints associated with the commitment status of power producers
[73]. This non-convexity is resolved in practice by solving a unit-commitment problem as a
mixed-integer linear programming (MILP) problem prior to the actual market clearing5 from
which optimal prices and quantities are derived [74].

Nonlinear and non-convex network constraints

Representing energy flow dynamics, (2.1d) is governed by nonlinear and non-convex functions,
even under steady-state conditions [75]. To attain convexity, electricity markets generally adopt a
linearized direct current (DC) approximation of the nonlinear and non-convex alternating current
(AC) power flow equations, relying on a number of assumptions [76]. In that case, the feasibility set
F

N reduces to a polyhedron, whereas the function fN(·) is an a�ne function including the power
flow distribution factor (PTDF) matrix together with an incidence matrix mapping the location of
market participants w.r.t. the power lines. However, the network flows at the resulting market
equilibrium are typically not feasible w.r.t. the AC power flows in the lines [77]. Furthermore,
with increasing decentralization of the electricity system, a significant portion of energy trades
are expected to occur within the distribution grid, by so-called “prosumers" of electricity [78],
via decentralized market structures [79]. The assumptions underlying the linearization of power
flows su↵er severe inaccuracies for such decentralized market structures operating in the playing
field of the distribution grid. Accurate operational modeling of flexible assets must be augmented
by a physically accurate representation of the network constraints as the flexible resources are
likely to be dispersed across the electricity network. With the inexact linear approximation, the
market-clearing outcomes for the delivery of flexibility services are not feasible in the real world.

Nonlinearities in modeling uncertainty and risk

With increasing shares of weather-dependent RES, electricity markets are exposed to significant
uncertainty which needs to be accounted for by stochastic market-clearing practices. This implies

5European markets usually do not solve a unit commitment problem, while admitting complex bid structure to enable
market participants to internalize their commitment decisions and costs associated within the bids.
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that the variable qi in (2.1) is no longer deterministic and rather adopts the structure of a stochastic
variable qi(›), where › represents the uncertainty faced by the market participants. Classical
approaches within the LP framework include scenario-based stochastic programs [33, 34, 80] and
robust optimization techniques [35, 59], which are unsuitable in practical settings as they su↵er
from computational intractability and solution conservativism, respectively. Options beyond the
LP framework include chance-constrained programming, which admits nonlinear yet convex,
computationally tractable6 and analytically expressable uncertainty models [31, 82]. Moreover,
uncertainty propagation across the energy systems while harnessing cross-carrier flexibility leads
to increased variance of state variables in the coupled system. Modeling this variance also requires
the use of nonlinear constraints [67, 83].

Non-convexities aside, a nonlinear yet convex market-clearing problem beyond the LP framework
alleviates these limitations to a large extent. For instance, within the realm of convex optimization,
the SOCP framework based on second-order cones generalizes the LP framework [68]. The choice
of LP in the early stages of electricity markets was motivated by the simplicity of economic
interpretations and the computational capabilities available at the time to solve large-scale LP
problems. However, recent mathematical and computational advances in conic programming
[84, 85] have made SOCP markets a practical option. Leveraging these developments, [Paper A]
proposes and analyzes a conic electricity market-clearing mechanism based on the SOCP framework.
SOCP-based electricity markets enable a more accurate representation of physical assets and the
network as well as uncertainty while retaining the advantages of LP in terms of optimality,
economic interpretations, and computational ease. In what follows, the contributions of [Paper A]
are briefly outlined in the context of prior works.

2.1.2 Towards conic markets for electricity

The market-clearing framework proposed in [Paper A] is uncertainty-aware by design since it
admits a chance-constrained stochastic market clearing based on a conic reformulation of the
probabilistic constraints [60]. More details on these constraints are given in Section 2.3. Regarding
participants’ strategies, the market framework in [Paper A] allows participants to express their
SOC-representable nonlinearities via convex strategy sets Qi formed by an intersection of polyhedra
and second-order cones [86, 87]. Further, participants are allowed to submit convex quadratic
cost functions ci(·) in (2.1a), since such functions are admissible in SOCP problems by constraint
reformulation [85]. These characteristics enable electricity markets to be asset-aware. Finally, convex
quadratic relaxations to the non-convex AC power flow equations have been proposed utilizing
the SOC relaxation [88–90], which improve the physical accuracy of power flow models over linear
approximations. The network feasibility set F

N in (2.1d) may thus be formed by an intersection of
polyhedra and second-order cones, instead of being restricted to polyhedral sets. This leads to
network-aware electricity markets, potentially reducing the re-dispatch of market participants to
ensure network feasibility [91]. To summarize, SOCP-based markets improve the uncertainty-,
asset-, and network-awareness of electricity markets.

Beyond energy markets, conic constraints in an equilibrium context were first discussed in [92],
focusing on mitigation of financial risk. In contrast, [Paper A] approaches the spatial price

6Theoretically, an optimization problem is considered computationally tractable if it can be solved in polynomial time.
However, as discussed in [81], tractability in practice refers to the reformulation of problems as linear or conic programs,
solvable using o↵-the-shelf solvers.
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equilibrium problem with conic constraints to alleviate the simplifications and approximation
errors induced by linearization in markets underlying physical systems and networks, e.g., energy
networks [26, 93, 94], water networks [95], telecommunication networks [96], supply chain and
logistics networks [97], etc.

In the context of electricity markets, SOC constraints have recently gained interest in market
proposals based on chance-constrained programming [31, 32]. The single-period stochastic market
clearing proposed in [31] discusses the internalization of uncertainty in the price formation
process, highlighting the advantages of chance-constrained electricity markets over scenario-
based stochastic markets in terms of potential acceptability in a real-world implementation. The
work in [32] showed that SOC reformulations of chance constraints also enable an analytical
characterization of the risk faced by electricity markets in mitigating the uncertain RES, leading
to risk- and variance-aware electricity prices. In regards to asset-awareness, [29] study quadratic
costs of deliverability in unit commitment problems, essential to modeling ramping costs while
providing flexibility. Finally, towards network-awareness, considering the SOC relaxation of
power flows in distribution systems, pricing schemes based on conic duality were proposed in
a deterministic setting in [30], and extended in [98] to include uncertainty modeled via chance
constraints.

Previous works have focused on only one of the three aspects, i.e., uncertainty-, asset-, or network-
awareness of the markets, whereas integration of large shares of RES in electricity markets requires
a combined approach. This thesis generalizes the prior works, such that heterogeneous market
participants with nonlinear (and potentially inter-temporal constraints) and quadratic costs could
participate in multiple commodity trades in an electricity market aimed at harnessing flexibility in
a network-aware, cost-e�cient manner. Consequently, flexibility providers take a central role in the
proposed market design, transforming electricity markets from energy-centric to flexibility-centric.

Remark 1 (Addressing non-convexities). Non-convexity of participants’ strategy sets in (2.1)
implies that the optimal quantity allocations and prices do not necessarily support social welfare-
maximizing equilibrium, i.e., producers may not recover their costs [99]. This is resolved in practice
by out-of-market payments, called uplift payments, which are in turn minimized by adopting a
convex hull pricing scheme, see [100, 101] for details7. Neglecting cost recovery of participants,
similar to the two-step unit commitment approach using MILP [74], these non-convexities can
be practically incorporated as an extension to the proposed framework in [Paper A], rendering
the problem as a mixed-integer second-order cone program (MISOCP), e.g., see [31]. Commercial
nonlinear programming (NLP) and conic solvers can already solve MISOCP problems, adopting a
variety of algorithms [104]. However, further computational advances are needed prior to adoption
in real-world electricity markets.

2.2 A general conic market for electricity

In addition to uncertainty-, asset-, and network-awareness of the electricity market framework
proposed in [Paper A], its generality is augmented by considering multiple time periods and
involving trades over multiple commodities, as will be discussed in Section 2.2.1. The general conic
market is formulated in Section 2.2.2, while Section 2.2.3 presents the market-clearing problem as a
spatial price equilibrium and discusses the economic properties underlying the market equilibrium.

7To alleviate the computational issues associated with computing convex hull prices in real-world electricity markets,
[102] develops a SOCP reformulation of the Lagrangian dual of the unit commitment problem under linear network flow
approximations. This was recently further generalized in [103] to include AC power flows via convex relaxations such
as the SOC relaxation. These approaches align well with the proposal of moving towards conic electricity markets in
[Paper A], as they indicate the readiness of the electricity markets to admit nonlinearities in the market-clearing problem.



16 CHAPTER 2. FLEXIBILITY-CENTRIC ELECTRICITY MARKETS

2.2.1 Towards a multi-period and multi-commodity electricity market

The optimization problem (2.1) is extended over discrete periods within a finite horizon, e.g., a
day-ahead electricity market cleared hourly with the periods collected in a set T = {1, 2, . . . , T},
where T = 24. Let P = {1, 2, . . . , P} denote the set of P hourly-traded commodities in the market.
The P commodities are of two kinds: energy and flexibility services. While energy represents the
quantity bought or sold in MWh at a given period, flexibility services refer to the exchanges that
facilitate a reliable operation of the electricity system during the real-time stage, e.g., ensuring
supply-demand balance, managing network congestion, providing voltage control, etc. Section 2.3
discusses such a flexibility service called adjustment policies, focusing on real-time supply-demand
balance. The following introduces the context of heterogeneous participants in a multi-period and
multi-commodity SOCP-based electricity market. Further notation is developed to add specifics to
the illustrative example (2.1).

Including heterogeneous market participants

The market framework proposed in [Paper A] admits several types of heterogeneous participants:
(i) dispatchable (and flexible, to varying degrees) power producers such as gas-fired power plants,
hydro power plants, etc., (ii) non-dispatchable power producers such as weather-dependent
RES, (iii) flexible energy consumers, and finally, (iv) actors that trade the flexibility services only,
e.g., firms operating (physical or virtual) energy storage or power-to-gas units. To enable for
a multi-period market framework, let the decision vector of the i-th participant qi œ RKiT be
comprised of subvectors qit œ RKi where Ki > P denotes the number of decision variables at
period t. This implies that in addition to possible contributions towards trades involving the P

commodities, participants may have Ki ≠P state variables involved in their operational constraints.
This segregation enables a variety of flexibility providers to accurately reflect their operational
constraints in the proposed conic market, via a bid structure that takes their state variables into
account. Cost functions cit(qit) : RKi ‘æ R in (2.1a) denote the participant’s time-separated costs.
This cost structure preserves the convexity of (2.1a) while enabling the participation of flexibility
providers, such as energy storage units, who could change roles from sellers (while discharging)
to buyers (while charging). For compactness of notation, subvectors qip œ RT denote the trades
towards the p-th commodity for the participant i over all T hours. Finally, the market participants
may face inter-temporal operational constraints that link their strategies across multiple periods,
e.g., constraints that limit the rate of change in quantities across subsequent periods, constraints
that couple the decisions over time periods. Such constraints a↵ect the strategy set Qi, however,
they are admissible in the market as long as the Qi are convex and conic.

Including SOC constraints

Any linear or convex quadratic inequalities involving the decision vector qi in (2.1) can be
represented by SOC constraints of the general form

ÎAij qi + bijÎ 6 d€
ij qi + eij , ’j œ Ji, (2.2)

where the set Ji collects the Ji SOC constraints faced by participant i [86]. Each constraint in
(2.2) admits parameters Aij œ Rmij◊KiT , bij œ Rmij , dij œ RKiT and eij œ R, corresponding
to a (mij + 1)-dimensional second-order cone C ™ Rmij+1. While the parameters embody the
structural and geometrical information for each constraint, the dimensions reflect the relationships
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among the decision variables. As illustrated in [Paper A], these parameters and dimensions are
not identical among the various participants or even among various SOC constraints of a single
participant. The feasibility region for (2.2) is formed by the Cartesian product of Ji second-order
cones Ci =

r
jœJi

Cij = Ci1 ◊ · · · ◊ CiJi , which is convex.

Ensuring market and network feasibility in the multi-commodity market

In the multi-commodity setup, market feasibility as given by (2.1c) can be rewritten as
ÿ

iœI
Gip qip = 0T , ’p œ P, (2.3)

where Gip œ RT ◊T represents a commodity-specific coupling matrix for each participant. For the
commodity representing energy, typically, identity matrices form this coupling matrix for electricity
producers and consumers. However, in the context of integrated energy system, these coupling
matrices may crucially encode energy conversion e�ciencies for flexibility providers. From a
market design perspective, the market feasibility modeling approach in (2.3) enables defining new
flexibility services that may involve trades among a subset of participants, i.e., Gip might be null
matrices for some commodities for some participants.

In modeling network feasibility, a linear PTDF formulation of power flows is adopted for simplicity
of exposition8. Let the electricity network be represented by a directed graph (N , L) comprised of
nodes N = {1, 2, . . . , N} and a set of power lines L collecting pairs of connected nodes (n, nÕ). Let
subsets In ™ I, ’n œ N collect the participants located at various nodes. The network feasibility
constraint (2.1d) for each market-clearing period is

------

ÿ

nœN
[�](:,n)

Q

a
ÿ

iœIn

ÿ

pœP
[Gip qip]t

R

b

------
6 s, ’t, (2.4)

where � œ RL◊N denotes the PTDF matrix of the electricity network and s œ RL denotes the
power line capacity limits. The absolute value operator enforces symmetric limits on line capacities,
but the formulation in (2.4) can be altered to include capacity limits that depend on the flow
direction. While the summation over all commodities in (2.4) reflects that all commodities share
the common physical network for trade fulfillment, alternative formulations can be envisioned,
e.g., flexibility services may be purely financial instruments to hedge risk in electricity markets
[105, 106].

2.2.2 SOCP-based market clearing as centrally-solved optimization

Adapting the illustrative problem in (2.1) to the multi-period and multi-commodity conic electricity
market setting leads to a market-clearing problem

min
qi

ÿ

iœI

ÿ

tœT

1
q€

it diag(cQ
it) qit + cL

it
€

qit

2
(2.5a)

s.t. ÎAij qi + bijÎ 6 d€
ij qi + eij , ’j œ Ji, ’i : (µij , ‹ij) (2.5b)

Fi qi = hi, ’i : (“i) (2.5c)
ÿ

iœI
Gip qip = 0T , ’p : (⁄p) (2.5d)

------

ÿ

nœN
[�](:,n)

Q

a
ÿ

iœIn

ÿ

pœP
[Gip qip]t

R

b

------
6 s, ’t, : (Í

t
, Ít) (2.5e)

8Example EC.3 in [Paper A] illustrates an extension to include the SOC-based convex relaxation of the non-convex AC
power flow equations.
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where the objective function is comprised of linear and quadratic cost (utility) terms cL
it, cQ

it œ RKi ,
respectively. Aside from the inequalities, constraint (2.5c) with parameters Fi œ RRi◊KiT and
hi œ RRi models the Ri participant-specific equality constraints that may arise in modeling
temporal or spatial dynamics underlying the physical asset models. For instance, in the integrated
energy system, modeling network flexibility from linepack involves such spatial dynamics, whereas
energy evolution equations in energy storage units model temporal dynamics via such linear
equality constraints.

The Lagrange multipliers associated with the constraints in (2.5) are shown in parentheses next to
them. For the SOC constraints (2.5b), a tuple of dual variables comprised of Lagrange multiples
µij œ Rmij and ‹ij œ R+ arise from dualization of the SOC constraints as detailed in Appendix A
[Paper A]. Participant-specific equality constraints (2.5c) have dual variable “i œ RRi associated
with them. The shadow prices ⁄p œ RT linked to market feasibility conditions in (2.5d) for the P

commodities are interpreted as the system-wide commodity prices. Finally, the dual variables
Í

t
, Ít œ RL

+ in (2.5e) are the shadow prices associated with the line flow limits.

Objective function reformulation and strict convexity

For computational tractability and analytical simplicity, the objective function (2.5a) is reformulated
by defining auxiliary variables zi œ RT , ’i, as discussed in detail in Example EC.1 in [Paper A].
As a result, the final SOCP-based market-clearing problem writes as

min
qi,zi

ÿ

iœI

ÿ

tœT

1
zit + cL

it
€

qit

2
(2.6a)

s.t.
...CQ

it qit

...
2
6 zit, ’t, ’i (2.6b)

(2.5b) ≠ (2.5e), (2.6c)

where the constraint (2.6b) is a special form of the general SOC constraint, called the rotated SOC
constraint [85]. The matrix parameter CQ

it is a factorization of the original quadratic cost matrix,
such that, diag(cQ

it) = CQ
it

€CQ
it. Observe that (2.6a) is strictly convex if every market participant

incurs a non-zero quadratic cost at each hour. Mathematically, this implies that strict convexity of
(2.6a) is guaranteed only if the quadratic cost matrix is positive definite, i.e., diag(cQ

it) º 0, ’t, ’i.

Conic market bids

Rethinking the market-clearing framework provides an opportunity to introduce a new bid format.
In the interest of generality, a common bid format for supply o↵ers and demand bids is adopted
and jointly referred to as bids. A conic market bid Bi by participant i is a tuple

Bi :=
1

ni, {Aij , bij , dij , eij}jœJi , Fi, hi, {Gip}pœP , {cQ
it, cL

it}tœT

2
, (2.7)

where ni œ N is the electricity network node at which the participant i is located. Parameters
Aij , bij , dij , eij , ’j œ Ji are associated with the Ji SOC constraints; Gip, ’p œ P are the coupling
matrices for the P commodities; Fi and hi correspond to the Ri equality constraints; and finally,
cQ

it, cL
it, ’t œ T represent the temporally-separated quadratic and linear bid prices. In contrast to

classical price-quantity bids prevalent in LP-based electricity markets, e.g., [107], the conic bids
enable participants to explicitly reflect the physical nonlinearities in their costs and operational
constraints. Furthermore, market participation in terms of supply (or demand) quantity towards
a specific commodity is decoupled from the costs and constraints associated with the state
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variables of the market participants. Compared to the price-quantity bids, the proposed bid
format requires a more complex exchange of information between the market participants and the
market operator. However, the additional modeling fidelity available to heterogeneous market
participants (including flexibility providers) can be argued to outweigh the increased complexity of
communication. In practice, a simple bid transformation software layer could convert the standard
price-quantity bids by participants into the conic bid format, prior to the market clearing in (2.6).
Section EC.1 of [Paper A] uses modeling examples to illustrate the parameters constituting the
conic market bids by heterogeneous market participants.

2.2.3 Economic interpretations and equilibrium analysis

Given the convexity of the centrally-solved market-clearing problem (2.6), a combination of linear
and conic Lagrangian duality theory is leveraged to derive the spatially-di↵erentiated prices of the
various commodities. The first step is to establish strong duality for the primal market-clearing
problem (2.6) and its dual problem, formulated in Appendix A of [Paper A]. In what follows, key
theoretical results on the spatial price equilibrium underlying the problem (2.6) are summarized,
while all proofs can be found in Appendix B of [Paper A].

Deriving prices for commodities

Unlike duality in LP problems where merely the feasibility of primal and dual problems guarantees
strong duality, SOCP problems require essentially strict feasibility of primal and dual problems for
strong duality to hold [87]. [Paper A] proves the existence of strong duality for problem (2.6) by
relying on the existence of finite bounds on the Euclidean norm of participants’ decision vectors
qi, ’i, as formalized in the following.

Lemma 1 (Boundedness). Given the feasibility of problem (2.6), there exist su�ciently large finite scalar
bounds D

Q
i œ R+ on the Euclidean norm of decision vectors qi, given by ÎqiÎ 6 D

Q
i , ’i, such that the

optimal solution to problem (2.6) remains unchanged with addition of the norm bounds.

The existence of such bounds is justified for the physical assets involved in the electricity market.
Lemma 1 enables proving essentially strict feasibility of the dual problem to (2.6) using a variant
of the Big-M method [108], while essentially strict feasibility of the primal market is proven using
a variation of Phase-I method [68]. Conventionally, in a market-clearing context, the existence
of strictly feasible or even merely feasible solutions is assumed while studying the equilibrium.
However, in the interest of generality and wider acceptance of the electricity market redesign
proposed in [Paper A], these issues are addressed theoretically at the market design stage.

Theorem 1 (Conic Spatial Prices). Given that the set of feasible solutions to the primal problem (2.6) is
non-empty and Lemma 1 holds, the following conditions are met at the optimal solution:

(i) Strong duality holds for the primal market-clearing problem (2.6) and its dual problem.

(ii) Optimal trade allocations qı
ip, ’i œ I for the p œ P commodities are obtained and the market clears

with optimal nodal prices �ı
p œ RN◊T for the p-th commodity given by

�ı
p = �ı

p ≠ �€(flı
≠ flı), ’p œ P, (2.8)

where flı, flı
œ RL◊T and �ı

p œ RN◊T are auxiliary variables with stacked columns of optimal
Lagrangian multipliers Íı

t
, Íı

t , ’t and ⁄ı
p, ’n, respectively, over the T market-clearing periods, i.e.,

flı = [Íı
1 · · · Íı

T ], flı = [Íı
1 · · · Íı

T
], and �ı

p := 1€
N ¢ ⁄ı

p.



20 CHAPTER 2. FLEXIBILITY-CENTRIC ELECTRICITY MARKETS

The structure of the conic spatial prices in Theorem 1 is analogous to the LMPs in the LP-based
markets. It comprises of a nodal price component �ı

p and a network price component that is
non-zero only if congestion arises due to power flows required for the physical fulfillment of the
commodity trades. The proof relies on deriving the sensitivity of the partial Lagrangian function
for (2.6) to commodity demands. A partial Lagrangian function of (2.6) is obtained by considering
only the coupling constraints (2.5d) - (2.5e) while relaxing the participant-specific constraints.

Interpretation as a spatial price equilibrium problem

To study the equilibria underlying the market-clearing problem (2.6), the following actors in the
market are considered: market participants, a market operator acting as a price setter, and a network
operator acting as a spatial arbitrager. While the market operator collects the bids (2.7) from the
market participants and is responsible for clearing the market, the network operator is responsible
for the physical fulfillment of the trades, collecting a non-zero congestion rent whenever trades
lead to network congestion.

To better illustrate the spatial price equilibrium resulting from interactions among these actors in
the multi-period and multi-commodity setting, a few auxiliary variables need to be defined. First,
for each participant, let Wip œ RN◊T denote the hourly quantities of p-th commodity transacted
(bought or sold) at all the N nodes of the network. Second, let the variable yt œ RN denote net
power injection at the N network nodes w.r.t. all commodities and all market participants. Finally,
to decompose the trades across the commodities, let a commodity-specific net nodal injection
variable Q

inj
p œ RN◊T be defined as

Qinj
p :=

Ëq
iœI1

(Gipqip)€ q
iœI2

(Gipqip)€
· · ·

q
iœIN

(Gipqip)€
È€

. (2.9)

The spatial price equilibrium is formed by the individual profit-maximizing problems of the I

market participants (2.10), the congestion rent maximization problem of the network operator
(2.11), and the market-clearing conditions upheld by the market operator (2.12). In (2.10), the prices
�p given by Theorem 1 appear as parameters whereas the price components, i.e., Í

t
, Ít, and ⁄p,

are shadow prices in the network operator’s problem (2.11) and the market operator’s equalities
(2.12), respectively. The market-clearing condition (2.12a) ensures that net injection at each node
at each period is balanced by transport service provided by the network operator, such that the
shadow price Êt œ RN is interpreted as the price of transmitting power from an arbitrary hub to
each of the N nodes. Condition (2.12b) ensures the system-wide balance of traded commodities,
as discussed previously.

Theorem 2 (Spatial Price Equilibrium). The centrally-solved market-clearing problem (2.6) is equivalent
to a competitive spatial price equilibrium comprised of market participants, i œ I, each solving the profit
maximization (2.10), the network operator solving the congestion rent maximization (2.11), and the market
operator clearing the market by enforcing the equalities (2.12).

The proof for Theorem 2 relies on the equivalence of the Karush-Kuhn-Tucker (KKT) optimality
conditions of the two problems. As a corollary to Theorem 2, the existence of an equilibrium is
proven based on showing convexity and compactness of strategy sets and continuity of the payo↵
functions in (2.10) and (2.11) due to [71, Theorem 1]. Lastly, observe that while the market-clearing
allocations qı

i are unique, conditioned on the strict convexity of the objective function (2.6a), no
such guarantees on the uniqueness of the prices �ı

p can be given since the dual problem to (2.6)



2.2. A GENERAL CONIC MARKET FOR ELECTRICITY 21

Market participant profit maximization, ’i œ I:

max
qi, zi,Wip

ÿ

pœP
tr(�p

€ Wip)

¸ ˚˙ ˝
transaction
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ÿ

tœT

1
zit + cL

it
€
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production (consumption)

≠

ÿ

tœT
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€
1 ÿ

pœP

!
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transport cost

for trade fulfillment

(2.10a)

s.t.
...CQ

it qit

...
2
6 zit, ’t (2.10b)

ÎAij qi + bijÎ 6 d€
ij qi + eij , ’j œ Ji (2.10c)

Fi qi = hi (2.10d)

W €
ip 1 = Gip qip, ’p œ P (2.10e)

Network operator congestion rent maximization:

max
yt

ÿ

tœT
Êt

€yt (2.11a)

s.t. ≠ s 6 �yt 6 s : (Í
t
, Ít) (2.11b)

Market clearing constraints:
ÿ

pœP
[Qinj

p ](:,t) = yt, ’t :(Êt) (2.12a)

ÿ

iœI
Gip qip = 0, ’p œ P :(⁄p) (2.12b)

(formulated in Appendix A of [Paper A]) does not have a strictly convex objective function. The
conditions on the uniqueness of the allocations at equilibrium closely correspond to those in
prevalent LP-based markets9, see [110] for example.

Satisfaction of desired economic properties

In classical mechanism design theory, competitive markets are evaluated for their ability to
satisfy certain economic properties [27, 69, 111]: e�ciency of the market, cost recovery of market
participants, revenue adequacy of the market operator, and incentive compatibility of bids.
Assuming a finite number of participants competing in the market, these properties cannot be
satisfied simultaneously without additional assumptions [55, 56]. Further, the satisfaction of these
properties relies on the choice of payment mechanism adopted, i.e., how the auctioneer (market
operator) characterizes rules for collecting payments from buyers and distributes them to the
sellers. In [Paper A], aligned with a majority of electricity markets worldwide, a marginal pricing
or uniform pricing scheme is adopted for pricing of commodities, implying that all accepted bids
are cleared at a common price at a given location in the network. Under the uniform pricing scheme
and assuming perfect competition (i.e., all market participants are price takers), the following
theorem formalizes theoretical results of [Paper A] on the satisfaction of economic properties.

Theorem 3 (Economic Properties). The market-clearing problem (2.6) results in allocations qı
i , ’i œ I

and spatial commodity prices �ı
p, ’p œ P such that at optimality the following hold:

9If the strict convexity assumption is dropped, [109] provides conditions on network connectivity, PTDF matrix
parameters, and the structure of participants’ cost functions under which unique equilibrium allocations are obtained in a
market with linear constraints. Further research is needed to study these conditions for the proposed SOCP-based market.
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(i) Market e�ciency: Under the perfect competition assumption, social welfare is maximized, i.e., no
participant has incentives to unilaterally deviate from the market-clearing outcomes.

(ii) Cost recovery: Let the bids Bi for each market participant i œ I be such that eij > ÎbijÎ, ’j œ Ji

and hi = 0. Then, the optimal allocations qı
i , ’i œ I and optimal spatial commodity prices

�ı
p, ’p œ P ensure cost recovery for the market participants.

(iii) Revenue adequacy: The market operator does not incur financial deficit at the end of the market-
clearing horizon, i.e.,

ÿ

pœP

ÿ

iœI
tr(�ı

p
€ W ı

ip) ≠

ÿ

tœT
Êı

t
€ yı

t > 0.

The property of market e�ciency in Theorem 3 is proven under the assumption of perfect
competition involving rational and self-interested participants and relies on the equivalence of
optimization and the equilibrium as given by Theorem 2. Cost recovery for each participant is
proven using strong duality of their individual profit maximization problem (2.10) in combination
with Cauchy-Schwarz inequality, conditioned on specific aspects of participants’ strategy sets
defined by the SOC constraints (2.5b) and linear equalities (2.5c). In particular, the condition
eij > ÎbijÎ, ’j œ Ji relates the parameters of SOC constraints (2.5b) and holds true in most
practical settings, except for participants having a non-zero lower bound on their decision variables.
This practical issue of cost recovery not being guaranteed for such market participants also exists
in LP-based electricity markets. The condition hi = 0 requires homogeneity of the linear equality
constraint (2.5c), i.e., qi = 0 should be feasible for the participants. The revenue adequacy condition
is satisfied when the net payments made to the operator towards all commodity trades is at least
as large as the payments made to the network operator towards transmission services. Revenue
adequacy (and budget balance10) of the market operator is proven using the KKT optimality
conditions of the market-clearing problem (2.6). Finally, incentive compatibility of the bids is
generally satisfied for uniform pricing scheme only while considering an infinite number of
market actors, i.e., the incentive of an individual participant to deviate from price-taking, perfectly
competitive behavior while submitting their bids tends to zero as the number of participants goes
to infinity [113]. Akin to the prevalent LP-based markets, the proposed conic market mechanism
achieves incentive compatibility at the limit. This implies that if a very large number of participants
compete in the market, then they bid according to their true preferences.

2.3 Case study: An uncertainty-aware electricity market

This section discusses the modeling details and numerical results associated with an uncertainty-
aware electricity market, a variant of the general conic electricity market proposed in [Paper A].
This specific variant focuses on the redesign of electricity markets to endogenously model the
uncertainty, while introducing a new flexibility service, called adjustment policies, to mitigate it.
Such uncertainty faced by a day-ahead electricity market could arise, for instance, from imperfect
forecasts of the power production from weather-dependent RES or from imperfect load forecasts

10Budget balance condition in mechanism design is a refinement of the revenue adequacy property, which is reached
when the market operator does not accrue any surplus revenue at the optimal market-clearing outcomes, i.e., the statement
(iii) in Theorem 3 is satisfied with an equality. From an economic perspective, this is an improvement over surplus-
generating outcomes, since the auctioneer’s (market operator’s) surplus represents a loss in social welfare (sum of utilities
of participants), which can be viewed as the cost of truthfulness [112].
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for consumers. An uncertainty-aware market clearing takes the form of a stochastic program. The
illustrative market-clearing problem (2.1) is rewritten as the following stochastic program:

min
q̃i(›)

EP›

Ë ÿ

iœI
ci(q̃i(›))

È
(2.13a)

s.t. q̃i(›) œ Qi, ’i (2.13b)

fM({q̃i(›)}iœI) œ F
M (2.13c)

fN({q̃i(›)}iœI) œ F
N. (2.13d)

The participants’ strategies q̃i(›) are stochastic variables such that optimal allocations from (2.13)
depend on realizations of a continuous random variable › ≥ P›, where P› is a probability
distribution function. The objective (2.13a) is to minimize the expected social disutility w.r.t. the
probability distribution P›. Although it involves a finite number of variables, due to the presence
of an infinite number of constraints based on the possibly infinitely many realizations of ›, problem
(2.13) is a semi-infinite program [114]. Computational intractability aside, such semi-infinite
programs complicate the economic interpretations associated with Lagrangian duality [115].

In a market setting, the intractability of such stochastic programs is typically resolved using robust
optimization techniques [116], scenario-based methods, and chance-constrained optimization
approach [117]. Scenario-based approximations replace the random variable › with samples
corresponding to finitely many scenarios sampled from P› , each scenario associated with a known
probability such that all probabilities add up to 1. Robust optimization approaches approximate
the infinite set from which › draws to a finite, well-defined convex uncertainty set, e.g., polyhedral,
ellipsoid, etc., over which the objective is to minimize cost against the worst-case realization
within the uncertainty set. However, in practical market settings, these approaches su↵er from
computational intractability due to a large number of scenarios needed to represent uncertainty
accurately and conservativism of the worst-case optimal solution, respectively. Chance-constrained
programming o↵ers a promising alternative to approximate the stochastic market clearing (2.13)
by providing computational tractability and analytical reformulations under mild conditions, e.g.,
feasibility region formed by (2.13b) - (2.13d) is polyhedral [117].

In Section 2.3.1 adjustment policies are introduced, while discussing the chance-constrained
optimization framework adopted to optimize them. Considering a single-period, single-node
electricity system, Section 2.3.2 draws numerical results from [Paper B] to demonstrate how
introducing this flexibility service results in endogenous pricing of uncertainty and remunerates
agents for its mitigation. Section 2.3.3 presents results from [Paper A] where the approach
is generalized to consider a network with heterogeneous market participants that face inter-
temporal constraints. The numerical results justify the move towards conic markets for uncertainty
management by comparing it with LP-based uncertainty-aware market alternatives.

2.3.1 Adjustment policies: A flexibility service

An electricity market under uncertainty, such as (2.13), can be seen as a two-stage problem:
day-ahead market-clearing followed by the real-time operation stage. Since the day-ahead market
makes decisions prior to the realization of uncertainty, it should account for recourse actions
by flexibility providers in response to uncertainty. In [Paper A] and [Paper B], a flexibility
service called adjustment policies is proposed and analyzed. Adjustment policies embody the
recourse actions in uncertainty-aware electricity markets and are activated during or close to
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Day-ahead market-clearing

Commodity 1: energy
Commodity 2: adjustment policies (flexibility)

Real-time operation

• energy physically delivered
• hourly-activated policies

Day: (D ≠ 1) Day: D

1 t
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24

Figure 2.1: Illustration of commodities traded in an uncertainty-aware electricity market. Repro-
duced from [Paper A].

real-time operation stage when uncertainty is revealed. These policies are in per unit (or represent
percentages) and characterize the contribution of each flexibility provider towards the mitigation
of potential real-time imbalance in the electricity system. Optimal adjustment policies are obtained
while making look-ahead decisions at the day-ahead market stage by jointly clearing energy and
flexibility in a two-commodity chance-constrained electricity market. Figure 2.1 illustrates the
market-clearing timeline of the uncertainty-aware electricity market. The setting in [Paper B]
focuses solely on power producers as flexibility providers. Whereas, [Paper A] generalizes the
market with SOC constraints that enables heterogeneous flexibility providers within (and possibly
beyond) the electricity system (e.g., flexible generators, energy storage, flexible consumers, etc.) to
submit bids for energy and flexibility. In addition to the payments for energy, flexibility providers
are paid upfront for the flexibility services, i.e., at the day-ahead stage, while the actual activation
of flexibility occurs closer to real-time when uncertainty is revealed.

While more general nonlinear but convex recourse decisions could potentially be admitted in the
proposed market framework based on [118], [Paper A] and [Paper B] employ a�ne adjustment
policies since they provide a computationally-tractable approximation of the stochastic program
(2.13) that can be solved without requiring an iterative solution approach. Such a�ne policies stem
from the theory of linear decision rules (LDR), which are well-studied in the field of operations
research to make an operational decision under uncertainty [58, 119, 120].

From historical data and forecasts to a�ne adjustment policies

At the day-ahead market-clearing stage, typically the market operator has access to load and RES
generation forecasts for the hours of physical delivery the next day. In addition to the forecasts, it
is reasonable to assume that the market operator has historical measurements of these uncertain
parameters, such that a model of the stochastic process driving this uncertainty can be constructed.
Using a single-period electricity market for simplicity of notation, the following further illustrates
the adjustment policies within the chance-constrained optimization framework.

Let the set W = {1, 2, . . . , W} collect the W independent sources of uncertainty faced by the market
operator and the vector › œ RW denote the random forecast errors. The set W ™ I could, for
instance, denote a set of weather-dependent RES. Assume that › follows a probability distribution
P› which is su�ciently parameterized by the its first- and second-order moments, i.e., mean
µ œ RW and covariance � œ RW ◊W . The moments of the error distribution are estimated by the
market operator having access to a finite number of historical measurements. Without loss of
generality, the stochastic power production q̃i œ R+ during real-time operation can be modeled as

q̃i = qi ≠ ›i, ’i œ W, (2.14a)
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where qi denotes a nominal production quantity, usually given by the best available forecast at
the time of bid submission and ›i is the i-th element of the forecast error vector ›. To mitigate
this uncertainty, the stochastic power production by a flexible power producer during real-time
operation is modeled as an a�ne recourse function of the uncertainty,

q̃i = qi + gi(›), ’i œ F , (2.14b)

where F ™ I collects the set of flexible power producers and gi : RW
‘æ R. Since [Paper A] and

[Paper B] employ global uncertainty characterizations11, i.e., flexibility providers respond to the
net uncertainty faced by the system, we have gi(›) = 1€›, where 1 œ RW is a vector of ones.

Under the chance-constrained optimization framework, the market operator allocates adjustment
policies to flexibility providers while allowing them to violate their operational constraints with a
small probability Á œ (0, 1), typically Á π 1. For instance, a chance constraint limiting the total
production, i.e., sum of nominal and adjustment, is written as

P›(qi + –i(1€›) 6 Qi) > (1 ≠ Á), ’i œ F , (2.14c)

where –i is the adjustment policy allocated to producer i. This probabilistic non-convex constraint
admits a convex analytical approximation based on [60, 117] and reformulates as a (W + 1)-
dimensional SOC constraint

rÁÎX1 –iÎ 6 Qi ≠ qi ≠ 1€µ –i1, (2.14d)

where X œ RW ◊W denotes a factorization of the covariance matrix such that � = XX€. For
instance, such a factorization can be obtained in a computationally e�cient manner using Cholesky
decomposition, resulting in X having a lower-triangular structure. Parameter rÁ œ R+ is a safety
parameter chosen by the market operator relying on the knowledge of the distribution P›, such
that rÁ increases as Á reduces. For instance, when › is normally distributed, the safety parameter
rÁ is given by the inverse cumulative distribution function of the standard Gaussian distribution
evaluated at (1 ≠ Á)th quantile, where Á < 0.5. Constraint (2.14d) is represented by the general SOC
constraint (2.2), for some fixed j, with parameters

Aij =
Ë
0 X1

È
, bij = 0, dij = ≠1/rÁ̂

Ë
1 1€µ

È€
and eij = Qi/rÁ̂.

Further modeling details involving the SOC reformulations of chance constraints of participants
with inter-temporal constraints, e.g., energy storage, as well as joint chance constraints, as opposed
to the individual constraint example in (2.14c), are provided in Section EC.2 of [Paper A].

Optimizing policies in chance-constrained programs

A few intermediate steps are followed to reach the final tractable form of the chance-constrained
electricity market-clearing problem. First, the chance constraints on participants’ linear inequalities
as well as the power flows in the network are analytically reformulated as SOC constraints of
varying dimensions, following a procedure similar to above. The expectation term in the objective
function involving the costs of the participants, as in (2.13a), is expanded and reformulated
as a rotated SOC as discussed in Section 2.2.2. The resulting market-clearing problem is a

11It is possible to have adjustment policies that exhibit higher fidelity of uncertainty response, e.g., in gas networks,
[Paper D] employs nodal response to uncertainty, i.e., adjustment policies of flexibility providers are individually tuned to
each uncertainty source, considering their location in network as well as potential network congestion.
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tractable SOCP problem solved centrally by the market operator using o↵-the-shelf commercial
conic solvers, such as MOSEK, Gurobi, CPLEX, etc. At the optimal solution, nominal dispatch
of the participants and adjustment policies are obtained. Each flexibility provider is allocated
an adjustment policy at a given market-clearing period while ensuring a least-cost delivery of
flexibility considering participant’s individual constraints as well as the coupled market and
network feasibility constraints. A description of intermediate steps and the formulation of the
final SOCP-based market-clearing problem is provided in Section EC.2 of [Paper A].

2.3.2 Endogenous pricing of uncertainty: A simple example

To demonstrate the endogenous pricing of uncertainty enabled by the proposed market framework,
[Paper B] considers a simple single-period, single-node electricity market setting. Only flexible
power producers with limits on minimum and maximum production capacity and available
flexible capacity are considered as flexibility providers. Electricity demand is considered inflexible
and inelastic, while wind farms are the sources of uncertainty in the system. The hourly market
is simulated over a clearing horizon of 24 hours, considering 1000 realizations of the uncertain
power production from the wind farms. Further details on modeling of the market participants,
e.g., their cost and constraint parameters, are in [Paper B]. The market framework entails a
chance-constrained co-optimization of energy and adjustment policies wherein adopting the
following assumptions result in an LP-based electricity market:

Assumption 1. The forecast errors are spatially and temporally uncorrelated, i.e., the covariance
matrix � is a diagonal matrix with variances of individual uncertainty sources in the diagonal.

Assumption 2. The adjustment policies characterizing the flexibility provided by flexible power
producers are non-negative.

Assumption 3. The forecast errors are assumed to follow a zero-mean Gaussian distribution, such
that › ≥ N (0, �).

In Assumption 1, while spatial independence of forecast errors is realistic for electricity markets
over large geographical area [82], the absence of temporal correlation enables the study of a
single-period electricity market by decoupling the market-clearing hours. Assumption 2 implies
that during the real-time operation, flexible power producers adapt their production aligned with
the overall system imbalance, i.e., if 1€› > 0 indicates a deficit in real-time production from RES as
compared to the day-ahead forecast, all power producers increase their production. While it appears
intuitive that this should always hold true, considering the network topology and congestion due
to energy flows and flexibility provision, it might be beneficial for flexibility providers to respond
in opposition to system needs provided it leads to higher social welfare12. The Gaussianity of
forecast errors in Assumption 3, coupled with Assumption 2, enables exact analytical reformulation
of chance constraints into linear inequalities. The resulting LP-based market facilitates easier
economic interpretations using LP duality theory and represents a soft change compared to
prevalent LP-based markets while introducing uncertainty-awareness. However, Assumptions 1-3
introduce restrictions that potentially limit practical adoption, and are therefore dropped in
[Paper A] while introducing a multi-period market involving network constraints.

12Considering inflexible and inelastic demand, the market-clearing problem involving social welfare maximization is
equivalent to a cost minimization problem for sellers since buyers exhibit an infinite utility. Hereafter, in this thesis, we use
cost minimization as a proxy for social welfare maximization.
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Table 2.1: Comparison between expected market clearing costs (averaged over 1000 scenarios) for
the deterministic benchmark and the proposed market-clearing framework.

Costs [ke]
Deterministic Uncertainty-aware

MRR = 200 MW “ = 0.5 “ = 1.0 “ = 3.0
Operations 401.4 398.2 400.9 408.0
Reserves 70.2 0.6 2 38.1

Total 471.6 398.6 402.9 446.1
Change [%] - -15.5% -14.6% -5.4%

Comparison with a deterministic benchmark

To illustrate the e↵ectiveness of the proposed uncertainty-aware market framework in [Paper B],
it was evaluated against a benchmark deterministic co-optimization of energy and reserve
procurement via out-of-sample simulations13. In the absence of currently operational joint
clearing of energy and reserves in European electricity markets, this benchmark reflects a natural
extension to the prevalent sequential market-clearing approach. The market operator enforces
an exogenously-determined minimum reserve requirement (MRR) to procure flexibility from the
flexibility providers. As detailed in [Paper B], for the system parameters considered, an MRR
of 200 MW was empirically evaluated to be an optimal choice to compare against the proposed
market framework. At lower values, the expected cost of operation in the deterministic benchmark
was higher and had high variability associated with it, due to load shedding needed during the
real-time operation stage. Whereas higher MRR values correspond to over-dimensioning of the
reserves such that the total system operation cost increases.

Table 2.1 compares the expected day-ahead market clearing costs for the deterministic benchmark
and the proposed uncertainty-aware market averaged over the 1000 wind forecasts realization
scenarios. The parameter “ represents the degree of unbiasedness of the Gaussian distribution
assumed by the chance constraints as compared to the distribution from which actual realization
scenarios are drawn, such that “ = 1 indicates that historical forecast errors distribution perfectly
represent the actual probability distribution. For values of “ < 1, the uncertainty-aware market
underestimates the actual uncertainty, resulting in lower costs of day-ahead reserve procurement,
whereas for values of “ larger than 1, the problem overestimates the actual wind forecast errors
and thus allocates a�ne adjustment policies for reserves such that the cost of reserves is higher.
For the deterministic benchmark, the cost of reserves is higher than the uncertainty-aware market,
even for the case of “ = 3 which reflects the case when the chance constraints are reformulated
using a distribution of uncertainty that is three times as dispersed as the actual realization. This
demonstrates the robustness of the uncertainty-aware market, given Assumption 3 holds, against
large forecast errors as compared to the deterministic benchmark.

Optimal dispatch, price of uncertainty and adjustment policies

Figure 2.2(a) and 2.2(b) compare the optimal dispatch of power producers to meet the inflexible
demand. While reserve capacity is scheduled in the deterministic benchmark, in the uncertainty-
aware market explicit reserve capacity procurement is replaced by adjustment policies. Optimal
day-ahead price for energy and flexibility (only available for the uncertainty-aware market) are

13Here, the notion of out-of-sample (OOS) simulations refers to di↵erent covariance matrices of the Gaussian distribution
from which scenarios of actual wind realizations are drawn. In contrast, stochastic programming literature typically
considers random scenarios drawn from other distributions as OOS.
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Figure 2.2: Day-ahead (DA) dispatch and market prices for the deterministic benchmark (Pdet)
and proposed uncertainty-aware market framework (Pcc). Reproduced from [Paper B].

shown in Figure 2.2(c) and Figure 2.2(d), respectively. Hours with higher wind power production
forecasts result in lower day-ahead prices for both the market mechanisms due to the zero marginal
cost of wind farms. Moreover, as Figure 2.2(d) shows, higher values of “ result in higher prices
associated with allocating adjustment policies, signifying the overestimation of actual wind forecast
realizations by the market-clearing problem. Figure 2.3 shows the optimal allocation of adjustment
policies among the flexible power producers, labeled G1 through G12. The more expensive
producer G4 is allocated with an adjustment policy only in hours with high wind share and with
higher values of “. In general, the uncertainty-aware framework provides the market operator
with a high-fidelity tool to optimally procure a risk-adjusted amount of flexibility from providers.

2.3.3 Uncertainty-aware SOCP-based electricity market

Next, Assumptions 1-3 are dropped while considering a two-commodity energy and flexibility
market admitting heterogenous participants: flexible power producers and energy storage units.
Market clearing outcomes are studied for various wind energy share paradigms, ranging from
10% to 60% of total energy demand from consumers met by wind power producers14. As before,
wind farms bid at zero costs to ensure bid acceptance, while energy storage units bid with costs
lower than the cheapest flexible power producer. To highlight the impact of network congestion
on spatial prices, two network configurations are studied: (i) without any network bottlenecks
and (ii) with network bottlenecks induced by reducing the capacity of three transmission lines,
highlighted in blue in Figure 2.4(a). Further details on the participants, wind share paradigms,
and network topology are in [Paper A]. The resulting SOCP problem leads to commodity trades
such that an uncertainty-aware spatial price equilibrium is reached.

14These wind energy share paradigms represent the ongoing green transition of electricity systems across the world,
supported by uncertain and variable RES.
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Reproduced from [Paper B].
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Figure 2: (a) 24-node electricity network showing a visualization of spatial prices of energy for the network configu-
ration with bottlenecks, (b) expected net demand for the 50% RES paradigm, (c) system-wide prices for energy and
(d) the total hourly flexibility payments for various RES paradigms

Impact of congestion and uncertainty on prices: The density plot in Figure 2(a) visualizes the im-
pact of network bottlenecks on the day-ahead energy prices for hour 23 under the 50% renewable
energy share paradigm. Figures 2(c) and 2(d) show the commodity prices for the network config-
uration without bottlenecks for the various RES paradigms. Observe that with higher shares of
renewable energy, the payment made by the market operator towards flexibility increases, comple-
mentary to the gradual reduction in the energy price due to wind farms bidding with zero prices.
Overall, increasing uncertainty faced at the day-ahead market-clearing stage leads to lower energy
prices while the payments towards flexibility services increase, thereby resulting in the right market
signals for investments in flexibility over the long run. Note that, since the adjustment polices are
quantified in per unit, the hourly flexibility payments shown in Figure 2(d) correspond to total
payments made by the market operator towards flexibility, adopting an allocation determined by
the adjustment policies of individual flexibility providers and as such, following a di↵erentiated

pricing scheme. We now discuss the allocation of adjustment policies and provide further insights
into the pricing of flexibility.

Flexibility allocation and payments: For the 50% RES paradigm, Figures 3(a)-3(f) show the optimal
allocation of dispatch and adjustment policies to the PPs (f1, f2, . . . , f12) and to the ESUs
(s1, s2, s3) for selected hours of the day for both network configurations. First, observe that
non-zero adjustment policies are only allocated to flexibility providers that are also dispatched for
the commodity energy, which is consistent with the requirement that both over- and under-supply
imbalances during the real-time operation are mitigated by the flexibility delivered. Second, the
network configuration with bottlenecks mandates the allocation of adjustment policies to more
number of flexible power producers, as network congestion is expected to impact the flexibility

17

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 2.4: (a) Electricity network visualizing spatial prices of energy for the configuration with
bottlenecks at hour 23 under the 50% RES paradigm, (b) expected net demand for the 50% RES
paradigm, (c) system-wide prices for energy, and (d) the total hourly flexibility payments for
various RES paradigms. Reproduced from [Paper A].
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cc and LP-based benchmarks: deterministic market
R1 and scenario-based stochastic market R2. Reproduced from [Paper A].

Impact of congestion and uncertainty on prices

The density plot in Figure 2.4(a) shows the day-ahead energy price at various network nodes
at hour 23 under the 50% RES paradigm. Figure 2.4(b) shows the day-ahead forecast for the
net demand (energy demand less the wind power forecasts) for the 50% RES paradigm, while
Figures 2.4(c) and 2.4(d) show the prices of energy and payments towards adjustment policies,
respectively. In addition to the di↵erence among the hours as discussed in Section 2.3.2, increasing
uncertainty in the day-ahead market leads to lower energy prices coupled with higher payments
towards procurement of flexibility services, thereby sending right market signals towards increased
participation of flexibility providers over the long run. Observe that, since the adjustment policies
are in per unit, the hourly flexibility payments in Figure 2.4(d) are total payments made by the
market operator towards procuring the flexibility service, which is then allocated among the
flexibility providers based on the policy allocated to them. In particular, as exhaustively covered in
[Paper A], the payment follows a di↵erentiated pricing scheme depending on a number of factors:
(i) level of uncertainty perceived by the market operator (quantified by forecast error covariance
matrix and day-ahead forecast), (ii) network topology, i.e., location of a flexibility provider w.r.t.
uncertainty sources and network congestions, and (iii) whether other flexibility providers are
available, i.e., how scarce is flexibility at a given hour.

Comparison with LP-based benchmarks: In-sample and out-of-sample costs

To highlight the improvements in social welfare while moving towards the SOCP-based uncertainty-
aware market, it is compared against two uncertainty-aware market-clearing references available
within the LP domain. First reference market, R1 is a deterministic market framework based
on MRR, similar to that considered in [Paper B], while the second reference market R2 solves
a scenario-based stochastic market-clearing problem. Further details on the benchmarks as
well as the parameters considered in these numerical experiments are provided in [Paper A].
Figure 2.5 shows the expected in-sample cost comparison between the proposed SOCP-based
market framework, denoted by M

cc and the LP-based benchmarks, R1 and R2. Here, in-sample
refers to evaluating the market-clearing outcomes against an identical set of samples used to
construct the uncertainty model for the chance-constrained program, referring to “ = 1 in the
previously-discussed context of [Paper B]. Due to its exogenous consideration of uncertainty, R1
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Figure 2.6: Out-of-sample market-clearing cost comparison for the 50% RES paradigm among
the proposed SOCP-based market M

cc and LP-based benchmarks: deterministic market R1 and
scenario-based stochastic market R2. Reproduced from [Paper A].

leads to higher cost (and eventually infeasibility in the case with network bottlenecks for RES share
of 60%) due to over-dimensioning of reserves procured. While M

cc and R2 lead to comparable
costs, the market outcomes of R2 do not provide any guarantees on the feasibility of the market
beyond these scenarios considered15.

To further compare the performance of these market frameworks, out-of-sample simulations
are performed by considering 500 uncertainty realizations distinct from those considered in
the reformulation of the chance constraints during the real-time operation stage. While the LP
benchmarks R1 and R2 involve a real-time market allowing adjustments (at a premium) up to
the flexible capacity limits defined in the day-ahead market stage, the SOCP-market M

cc strictly
adheres to the activation of the adjustment policies. To account for potential infeasibility during the
real-time stage, contingency actions, i.e., wind power curtailment and load shedding, are allowed
with a high penalty. Figure 2.6 shows the distribution of out-of-sample costs for the various market
frameworks for the 50% RES paradigm16. The deterministic market framework R1 performs poorly
compared to others, as in the in-sample case. Further, the scenario-based market framework R2
exhibits a high variability from the expected in-sample cost, and as further discussed in [Paper A],
requires frequent contingency actions as compared to M

cc. The numerical results demonstrate
the uncertainty-aware SOCP-based market framework outperforms the LP-based benchmarks in
terms of social welfare and its reduced variability.

2.4 Future perspectives

While the discussion in this chapter focuses primarily on electricity markets, the theoretical results
and methodology developed are of potential interest in competitive settings that involve physical
or non-physical systems, where cost- and constraint-related nonlinearities are currently managed
by adopting approximation techniques via linearization. In particular, within the integrated energy
system context, the flexibility-centric redesign of electricity markets presented in this chapter

15An analytical lower bound on the number of scenarios necessary to provide identical feasibility guarantees for Mcc

and R2 is given in [121, Theorem 5]. Based on the parameters and participant characteristics considered in [Paper A], it
corresponds to 80,000 scenarios, therefore imposing serious computational limitations on practical adoption of R2.

16For each box, the central line indicates the median, the ends indicate the 25th and 75th percentiles, whereas the
whiskers extend up to 1.5 times the interquartile range and rings denote outliers.
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contributes towards a cost-e�cient harnessing of cross-carrier flexibility. A SOCP-based electricity
market provides a crucial step in generalizing the prevalent LP-based markets, such that a variety
of heterogeneous flexibility providers are incentivized to reflect their nonlinearities via conic
bids, ensuring cost recovery beyond the linear approximations of their feasibility sets. Further,
a physically accurate representation of flows in the network is also enabled by this step in the
evolution of electricity markets. Finally, as demonstrated by numerical experiments, SOCP-based
markets allow an endogenous characterization of uncertainty faced at the day-ahead stage, thereby
improving social welfare. Beyond the uncertainty-aware variant simulated in the experiments,
the general conic market proposal opens pathways for future research involving one or more
attributes of uncertainty-, asset-, and network-awareness. For instance, studying coordination
between transmission and distribution system operators to harness flexibility in uncertainty-
and network-aware settings. In the integrated energy system context, as covered in Chapter 3,
combining these attributes paves the way for a reliable and resilient system operation in the
coupled energy systems, while harnessing cross-carrier flexibility.



CHAPTER3
Uncertainty-Aware Coordination

Among Energy Systems

This chapter summarizes the contributions of this thesis towards enabling uncertainty-aware
coordination among energy systems. In addition to the operational costs and constraints of the
flexibility providers within the integrated energy system, consideration of uncertainty and its
propagation across system boundaries is crucial for harnessing cross-carrier flexibility. Section 3.1
presents a general uncertainty-aware centralized coordination framework for electricity and
natural gas systems, discusses the challenges associated with it, and how this thesis addresses
them. Based on [Paper C], Section 3.2 discusses the specific methodology and numerical results
associated with harnessing cross-carrier flexibility under uncertainty propagation. Focusing on
the impact of uncertainty propagation on state variables, Section 3.3 discusses the uncertainty- and
variance-aware gas market framework proposed in [Paper D]. Lastly, Section 3.4 discusses future
research perspectives.

3.1 Uncertainty propagation in integrated energy systems

The increasing interdependence among energy systems leads to the propagation of uncertainty
among them. The challenges with uncertainty propagation are particularly severe for coupled
electricity and natural gas systems. This is because the green energy transition of the electricity
system is supported primarily by the operational flexibility provided by gas-fired power plants.
Figure 3.1 illustrates a coupled electricity and gas system. On the one hand, cross-carrier flexibility
is harnessed via the flexible operation of gas-fired power plants and short-term storage of
natural gas in pipelines, i.e., linepack flexibility. On the other hand, adapting to the supply
fluctuations from weather-dependent RES in the electricity system induces unforeseen changes
in the operational status of the assets and network in the natural gas system. Naturally, the
propagation of uncertainty can be studied in both directions, e.g., considering renewable biogas
sources which induce uncertain supply injections into the electricity system or the impact of

Electricity
system

Natural gas
system

Network flexibility

Uncertainty propagation

Renewables

Gas-fired power plant Linepack

Figure 3.1: Illustration of a coupled electricity and natural gas system.
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upcoming power-to-gas units leveraging surplus electricity production from RES. However, for
simplicity of exposition, this thesis studies uni-directional uncertainty propagation, i.e., how the
operational constraints of assets and the network in the coupled natural gas system are impacted
by the uncertainty propagated from the electricity system1.

As discussed in Chapter 1, electricity and natural gas systems are typically dispatched sequentially
in separate markets. Nevertheless, this chapter presents a methodology assuming centralized
dispatch as a first step towards studying uncertainty propagation. Such an uncertainty-aware,
centralized dispatch can be regarded as an ideal benchmark for market-based coordination among
the electricity and gas systems, providing upper bounds on the amount of cross-carrier flexibility
harnessed and uncertainty propagation mitigated.

3.1.1 Centralized electricity and natural gas dispatch under uncertainty

Consider a stochastic centralized dispatch of a coupled electricity and natural gas system formulated
as problem (3.1), to be solved by a central system operator ahead of real-time operation, e.g., at the
day-ahead stage. From an uncertainty modeling perspective, the problem is a distributionally-
robust chance-constrained (DRCC) program. It generalizes the stochastic market-clearing problem
(2.13) as the uncertainty faced by the central system operator is no longer assumed to follow a
specific distribution. Instead, the objective function (3.1a) adopts a min-max structure such that
the total expected system cost over the market-clearing horizon is minimized while the uncertain
variable, ›, is drawn from the worst probability distribution within a family of distributions,
collected in an ambiguity set2

P . A robust joint chance constraint (3.1b) involves a set of linear
inequalities that are simultaneously satisfied with a probability or reliability level of at least (1 ≠ Á)
over all probability distributions P› contained in the family P . The parameter Á œ (0, 1) denotes
a preset constraint violation probability encapsulating the system operator’s risk preference.
Modeling the impact of uncertainty on state variables of a physical system using such joint chance
constraints aligns naturally with the well-established reliability metrics used by system operators
to characterize risk. The equality constraints (3.1c) are expected to hold almost surely (a.s.), given
the uncertainty. The uncertainty-aware coordination problem is written as:

min
‰̃,Ë̃,Ÿ̃
Í̃,Ï̃,Ẫ

max
P›œP

EP›

Ë ÿ

tœT

1 ÿ

iœI
cE

i (‰̃it) +
ÿ

kœK
cG

k (Ë̃kt)
2È

(3.1a)

s.t. min
P›œP

P›

S

WWWWWU

fEN(‰̃t, Ÿ̃t) 6 0

h‰(‰̃t) 6 0, hË(Ë̃t) 6 0

hÍ(Í̃t) 6 0, hÏ(Ï̃t) 6 0

hŸ(Ÿ̃t) 6 0, hÂ(Ẫt) 6 0

T

XXXXXV
Ø 1 ≠ Á, ’t œ T , (3.1b)

min
P›œP

P›

S

WWWWWU

fEM(‰̃t, Ÿ̃t, ”E
t ) = 0

fGM(‰̃t, Ë̃t, Ÿ̃t, Ï̃t, ”G
t ) = 0

fGN(Ï̃t, Í̃t, Ÿ̃t) = 0

fLP
t (Ẫ, Ï̃) = 0

T

XXXXXV

a.s.= 1, ’t œ T , (3.1c)

1Aligned with this focus, the framework presented in this thesis represents the gas network with a higher modeling
granularity, i.e., consideration of state variables, whereas the state variables of the electricity network, e.g., bus voltage
magnitudes and phases, power losses, etc. are ignored by assuming lossless DC power flows in lines.

2Ambiguity sets are typically built using approaches that leverage historical observations or estimated empirical
distributions. For instance, by fitting observations to known probability distributions, by collecting distributions described
by empirically estimated moments of uncertainty (moment-based ambiguity sets), by using probabilistic distance metrics
such as Wasserstein distance measured w.r.t. the empirical distribution (metric-based ambiguity sets), etc. See [122] for an
extensive review.
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where the dependency of the stochastic variables on the uncertainty is omitted from representation
to reduce notational clutter. The gas network is represented by a directed graph (M, E) with gas
nodes denoted by M = {1, 2, . . . , M} and pipelines denoted by E = {1, 2, . . . , E}. Each element of
the set E is formed by a pair of connected nodes (m, mÕ). The graph may contain cycles, whereas
parallel pipelines and self-loops should not exist. The set of pipelines hosting pressure regulation
assets such as compressors or valves are called active pipelines and denoted by Ea ™ E . For the
electricity system, as in Chapter 2, a directed graph (N , L) denotes the electricity network with N

nodes and L power lines. Parameters ”E
t œ RN and ”G

t œ RM denote the inflexible, inelastic nodal
demand of electricity and gas at the respective nodes of the energy systems. Stochastic variables
‰̃t(›) œ RI

+ and Ë̃t(›) œ RK
+ indicate the electricity and natural gas injected by the electricity

producers and gas suppliers, collected in sets I = {1, 2, . . . , I} and K = {1, 2, . . . , K}, respectively.
Variables Í̃t(›) œ RM

+ , Ï̃t(›) œ RE , and Ẫt(›) œ RE
+ denote the state variables of the natural gas

system, i.e., the nodal gas pressures, gas flows in pipelines, and the amount of linepack available
in the pipelines. Finally, the variable Ÿ̃t(›) œ RE denotes active, continuous control actions in
regulating gas pressure in the network, i.e., by the operation of compressors and valves.

The terms in objective function (3.1a), cE
i (‰̃it) and cG

k (Ë̃kt) denote the convex, twice-di↵erentiable
cost functions of electricity and natural gas injection over the T = {1, 2, . . . , T} periods. The set of
linear inequalities comprising the robust joint chance constraint (3.1b) is formed by the power flow
limits in the electricity system, fEN(‰̃t, Ÿ̃t) 6 0, and bounds on the variables, denoted by functions
taking the form h(·)(·) 6 0. These functions represent the possibly multiple (but finite) number of
linear inequalities on the variables. Apart from physical bounds on the variables, these inequalities
may include system operator’s operational constraints, e.g., ensuring uni-directional gas flows
in active pipelines, maintaining a minimum linepack amount at the end of dispatch horizon,
etc. Linear equality constraints fEM(‰̃t, Ÿ̃t, ”E

t ) = 0 and fGM(‰̃t, Ë̃t, Ÿ̃t, Ï̃t, ”G
t ) = 0 represent the

electricity and gas market-clearing conditions, i.e., supply-demand balance, respectively. Observe
that the gas market-clearing condition is the crucial constraint which couples the decisions between
the two systems, such that the fuel consumed by gas-fired power plants is considered as variable
gas withdrawals. The pressure regulation variable Ÿ̃t(›) appears in both the types of balancing
constraints to account for compressors and valves that may operate by consuming electricity or
natural gas. The flows of natural gas in the network is governed by the nonlinear and non-convex
equality fGN(Ï̃t, Í̃t, Ÿ̃t) = 0, representing the steady state flow of gas in pipelines as a function of
nodal pressure and its regulation. Lastly, the linear equality fLP

t (Ẫ, Ï̃) = 0 represents the temporal
dynamics of natural gas linepack.

Similar to problem (2.13), problem (3.1) is a semi-infinite program due to the possibly infinite
number of constraints owing to the stochastic variables. The chance-constrained stochastic
programming problem (2.13) admits computationally-tractable and convex reformulations under
mild conditions. In practice, however, the assumption of a known probability distribution can be
restrictive. On the contrary, optimal solutions to DRCC programs, such as (3.1), provide stronger
reliability guarantees against the possible uncertainty realizations drawing from an unknown
distribution. This is of special relevance to the study of uncertainty propagation as the robustness
of the solution against uncertainty is desirable. Moreover, the conservativeness of the solution
associated with considering the worst-case distribution in the objective function can be adjusted by
refining the ambiguity set and by an appropriate choice the joint constraint violation probability
through data-driven approaches [122]. Despite its modeling advantages, the structure of problem
(3.1) poses analytical and computational challenges that must be resolved to achieve tractability.
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In addition to the tractability issues stemming from the choice of a generic uncertainty model
in (3.1), studying uncertainty propagation as such brings additional challenges. For instance,
the non-convexity associated with gas flow equations in (3.1c) needs to be addressed. Similarly,
analytical characterizations of the impact of uncertainty propagation on the state variables in the
coupled gas network must be obtained. In what follows, these challenges are further elaborated
upon and the specific methodological contributions of [Paper C] and [Paper D] are presented in
the context of prior works.

3.1.2 Challenges in studying uncertainty propagation

Modeling flow dynamics in networks

Under steady-state conditions and adopting simplifying assumptions, the physical equations
governing the flow of gas in pipelines are represented by nonlinear equalities in (3.1c) that are
inherently non-convex3. In deterministic settings, i.e., when all parameters are known with certainty,
problem (3.1) is solved by overcoming non-convexity, typically using convex SOC relaxations
[125] or linearization around exogenously-determined discrete operating points [126]. Without
circumventing non-convexity and without considering the uncertainty propagation perspective, a
deterministic gas network optimization can be solved using specialized algorithmic solvers [124] or
general-purpose nonlinear solvers [127]. However, the consideration of uncertainty in the nonlinear
and non-convex setting of problem (3.1) brings significant challenges since establishing a convex
analytical dependency of the optimization variables on the uncertainty is not straightforward.
Beyond steady-state conditions, a transient model of gas flows in the pipelines is described by a
system of nonlinear partial di↵erential equations, for which no analytical solution is available even
in deterministic settings. While computationally-intensive numerical methods must be deployed
to solve them, deriving meaningful market-clearing prices in presence of such algorithms can be
challenging. Nevertheless, for studying uncertainty propagation with a focus on its market-based
mitigation, it is su�cient to model gas flows under steady-state conditions. This is because all
time derivatives in the partial di↵erential equations can be assumed to be zero for the temporal
resolution under which markets typically operate, i.e., hourly or quarter-hourly periods4.

Analytical characterization of uncertainty response

As problem (3.1) is solved at the day-ahead stage, recourse decisions are necessary to guide the
integrated energy system towards mitigation of uncertainty during the subsequent real-time
operation periods. From an uncertainty propagation perspective, recourse actions, if optimally
decided, provide a network response model in the natural gas system such that an analytical
dependency between the network state and the random forecast errors is established. Classically,
within the DRCC framework, recourse actions based on linear decision rules have been proposed
[129]. Considering the nonlinearity and non-convexity of the steady-state gas flow equation
in (3.1c), linear decision rules provide a tractable approximation of the nonlinear dynamics of
state variables in the natural gas system. Nonlinear decision rules, e.g., quadratic decision rules
proposed in [118], potentially provide a tighter approximation of the stochastic problem, albeit at

3Also known as the Weymouth equation, these non-convex equalities are obtained by ignoring friction and geographical
tilt in pipelines as well as neglecting any variations in ambient temperature and in gas injections under steady-state
conditions [123, 124].

4This assumption is supported by recent work in [128] who show that these transients rarely survive in large, real-world
gas networks beyond a time step of 3 minutes.
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higher modeling and computational complexity. Nonetheless, if linear decision rules are chosen in
the interest of their modeling simplicity, the solutions to problem (3.1) should be validated via
rigorous in-sample and out-of-sample simulation studies. These simulation studies are aimed
at characterizing the sub-optimality and approximation errors w.r.t the original non-convex
stochastic problem, induced by the adoption of linear decision rules. Another critical aspect
underlying uncertainty propagation among energy systems is analyzing and managing the impact
of uncertainty from the electricity side on the state variables of the natural gas system, i.e., nodal
pressures, flows in the pipelines, and consequently, the amount of linepack available. For that,
simulations aside, analytical expressions characterizing the uncertainty-dependence of these state
variables are necessary.

Convex approximation of robust joint chance constraints

Due to the presence of robust joint chance constraints (3.1b), the problem (3.1) typically admits a non-
convex feasible region and is notoriously di�cult to solve, even when the family of distributions
P is a singleton set, i.e., when the chance constraints are not distributionally robust and the
inequalities forming them are linear [130]. Tractable convex approximations and reformulations
that exploit the structure of the problem (3.1) are essential to attain solvability. Several approaches
towards achieving tractability for such problems are summarized in [131] and extensively surveyed
in [122]. Relevant to this thesis, a classical approach uses Bonferroni’s inequality to conservatively
approximate (3.1b) by replacing it with N6 individual robust chance constraints deriving violation
probabilities from the vector Á̂ œ R

N6
+ , such that 1€Á̂ = Á, as in [60]. This approach is similar to how

non-robust joint chance constraints are treated and provides an inner convex approximation of the
robust joint chance constraint (3.1b), which could be improved upon via an optimal selection [130]
of Á̂. Nevertheless, even a sub-optimal selection of Á̂, e.g., Á̂k = Á

N6
, ’k = 1, 2, . . . , N6 provides a

joint constraint feasibility guarantee [130], which is crucial to studying uncertainty propagation.
Similarly, a naive outer convex approximation of non-convex robust joint constraint is obtained
by relaxing the requirement of simultaneous satisfaction of the N6 linear inequalities in (3.1b).
While it does not provide guarantees on joint constraint satisfaction, this approach can still be
useful in studying complex, temporally-coupled physical systems, as described by problem (3.1),
under uncertainty. In such cases, it is essential to analyze the solution to problem (3.1) through
out-of-sample simulations focusing on actual constraint violations.

3.1.3 Towards uncertainty-aware integrated electricity and gas systems

A large number of prior works, e.g., see [21, 38, 50, 132], have studied the harnessing of cross-carrier
flexibility from integrated electricity and gas systems in deterministic settings. Recently, the
research focus has shifted towards uncertainty-aware coordination among these energy systems
to reflect the reality of high shares of weather-dependent RES in the electricity system. Within
the uncertainty-aware coordination framework, stochastic programs based on scenarios [51, 133],
robust optimization techniques [134–136], and chance-constrained optimization [137, 138] have
been adopted. While scenario approaches face computational tractability issues stemming from
a large number of scenarios required to represent uncertainty adequately, robust optimization
techniques su↵er from obtaining overly conservative operational costs [139]. Besides, from an
uncertainty propagation perspective, the major drawback of robust and scenario-based programs
is their ignorance of the gas system state within the prescribed uncertainty set or beyond the
chosen scenarios. This provides barriers to achieving an analytical characterization of a gas system
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uncertainty response model, which is crucial to establish a market-based framework for mitigation
of uncertainty propagation. Lastly, the scenario-based and robust optimization approaches
lead to poor performance of the day-ahead decisions when faced with uncertainty realizations
beyond those forming the uncertainty set and scenario set, respectively. As an alternative, chance-
constrained optimization yields an optimal uncertainty response across the entire forecast error
distribution (or a family of such distributions in the DRCC setting). Furthermore, the convex
analytical reformulations admitted by the probabilistic chance constraints provide opportunities to
establish an analytical dependency between uncertainty and the state of the natural gas system.

Overcoming the previously-discussed challenges, this thesis employs chance-constrained opti-
mization to develop a methodology to analyze and mitigate the uncertainty propagation. First,
[Paper C] develops a unified framework to harness cross-carrier flexibility by allocating a�ne
recourse policies to flexible agents (e.g., flexible power producers, natural gas suppliers) and state
variables of the gas system which govern linepack flexibility. A tractable convex approximation
of problem (3.1) is obtained by considering a moment-based ambiguity set P that contains all
multivariate distributions from which random variable › could be drawn, such that they are
described by a known mean and covariance. Empirical estimates of these statistical moments are
obtained from the historical measurements of forecast errors related to the uncertainty, thereby
resulting in day-ahead and recourse decisions consistent with the available information on uncer-
tainty. The non-convexity of gas flow equations and inter-temporal constraints associated with
linepack flexibility in (3.1c) are managed by applying suitable convex relaxation techniques and
reformulations involving the separation of uncertainty coe�cients, respectively.

While [Paper C] develops the first methodology to study uncertainty propagation using a tractable
approximation of the non-convex problem (3.1), the a�ne policies allocated to gas system state
variables fail to capture the impacts of uncertainty propagation in the gas network, governed by
nonlinear physical equations. Consequently, numerical results indicate that state variables are
prone to constraint violations, thereby worsening the errors induced by the convex approximation.

To address that, [Paper D] develops a chance-constrained gas system optimization framework
wherein control policies for flexibility providers, i.e., gas suppliers and active pipelines in the
gas system, are optimized such that the state variables admit closed-form analytical expressions
involving nominal and random components. This is achieved by adopting a linearization strategy
for convexification of the non-convex gas flow equations in (3.1c). The linearization strategy
coupled with the a�ne control policies ensures that the random state variables are given by a�ne
functions of the control inputs for flexible gas injections and pressure regulation, thereby capturing
the dependency of the uncertain network state on the system operator’s decisions. As a result,
constraint feasibility of state variables during real-time operation is guaranteed, up to the quality
of the available day-ahead forecasts. Additionally, the variance of state variables under uncertainty
can be explicitly penalized to reflect system operator’s preference on the network state during
the real-time operation stage. Overall, the analytical characterization of uncertainty and variance
mitigation enables e�cient pricing of these flexibility services in addition to the natural gas
commodity, leveraging a combination of LP and SOCP duality. Consequently, flexibility providers
are e�ciently remunerated for their contribution towards uncertainty and variance mitigation
during the real-time operation stage, such that they recover the costs incurred in providing these
services while the gas market operator remains revenue adequate. The satisfaction of these desired
economic properties is crucial to the real-world adoption of the proposed stochastic control and
pricing approach.
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Figure 3.2: Uncertainty-aware coordinated electricity and natural gas dispatch

In summary, the stochastic control and market for natural gas systems developed in [Paper D]
provides system operators with tools to e�ciently control the uncertainty propagation, while
incentivizing competing agents to provide flexibility services. The final SOCP market-clearing
problem involves an additional variance minimization service, thereby extending the two-commodity
uncertainty-aware conic electricity market discussed in Chapter 2.3 to a three-commodity coupled
electricity and natural gas market that takes uncertainty propagation into account.

The uncertainty-aware coordination framework developed in [Paper C] and [Paper D], elaborated
in the next sections, paves the way for market mechanisms incentivizing the active participation
of gas system agents and the gas network to provide cross-carrier flexibility while mitigating
uncertainty propagation.

3.2 A�ne policies for harnessing cross-carrier flexibility

In the following, Section 3.2.1 outlines the methodology developed in [Paper C] to provide
a tractable convex approximation of problem (3.1). Section 3.2.2 presents numerical results
focusing on the trade-o↵ between expected system operation cost and mitigation of the uncertainty
propagated while discussing the quality of the convex approximation to problem (3.1).

3.2.1 Towards a tractable SOCP problem

Figure 3.2 summarizes the DRCC framework proposed in [Paper C] to study uncertainty propa-
gation and its mitigation. A centralized, uncertainty-aware dispatch is solved at the day-ahead
stage by a central system operator responsible for both the electricity and natural gas systems. The
power produced by wind farms during the real-time operation stage is the sole uncertainty source
considered. An ambiguity set constructed using the statistical moments derived from historical
measurements, collected in a set S = {1, 2, . . . , S}, is used to quantify the uncertainty faced by the
system operator. Aside from the modeling assumptions discussed so far, e.g., steady-state flow of
gas in pipelines and lossless DC approximation of power flows, the computational tractability of
problem (3.1) is achieved under the following technical assumptions:

Assumption 4. The true probability distribution underlying the uncertainty is uniquely described
by its first- and second-order moments.

Assumption 5. The directions of gas flows in all pipelines in the gas system are predetermined
and considered to be fixed at the day-ahead stage by the central system operator.

Assumption 6. The pressure regulation actions in the active pipelines in the gas system are
considered lossless, i.e., the pressure regulation does not consume any electricity or gas.
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Assumption 4 is essential to the definition of moment-based ambiguity sets to characterize the
distributional robustness of problem (3.1). Choosing this ambiguity set renders the DRCC program
(3.1) robust against a set of log-concave distributions, which includes common distributions
that forecast errors in energy systems are often modeled to obey, e.g., Gaussian, Weibull, beta
distribution, etc. [140]. Assumption 5 is adopted to enable the approximation of problem (3.1)
as a convex problem. Otherwise, integer variables are necessary to model flow directions. This
introduces additional non-convexities and complexities associated with characterizing recourse
actions in presence of integer variables. Lastly, Assumption 6 is a technical assumption adopted
to simplify the modeling of pressure regulation. Modeling electricity-based pressure regulation
introduces bi-directional uncertainty propagation which is out of the scope of this thesis, whereas
gas-based pressure regulation introduces challenges in convexification of the gas flow equations.
Assumptions 5-6 are dropped in [Paper D] by using a linearization strategy that circumvents these
challenges.

Referring to Figure 3.2, the set O
ı collects the solution to the central dispatch problem. It is

comprised of an optimal day-ahead schedule and control policies allocated to agents in both energy
systems. The solution quality is evaluated via out-of-sample analysis, using a set of realizations
comprising the test dataset S

Õ = {1, 2, . . . , SÕ
}, distinct from those used to estimate the statistical

moments. The out-of-sample simulations are performed by fixing the day-ahead decisions while
their performance is evaluated against the test dataset, without re-optimization performed to
ensure real-time feasibility of the problem. Therefore, they are referred to as ex-ante simulations.
The following introduces some additional notation and describes the intermediate steps involved
in obtaining the final tractable SOCP form of the non-convex DRCC problem (3.1).

Moment-based ambiguity set

For the T periods considered, let › œ RW T denote the uncertain forecast errors for wind farms
W = {1, 2, . . . , W}, where W collects the W wind farms in the electricity system. Let the ambiguity
set describing the uncertainty › be defined such that it contains all multivariate probability
distributions supported by a mean µ œ RW T and covariance � œ RW T ◊W T , given as

P = {P› œ P
0(RW T ) : EP› [›] = µ, EP› [››€] = �}, (3.2)

where P
0 denotes all probability distributions in RW T . Without losing generality, forecast errors

are considered to follow a zero-mean distribution, i.e., µ = 0 and that the true covariance matrix
� can be empirically estimated from historical measurements. The structure of the positive
semi-definite covariance matrix, � is such that its diagonal blocks, comprised of sub-matrices,
�t œ RW ◊W , ’t œ T , capture the spatial correlation among the forecast errors in period t, while
the o↵-diagonal blocks contain information about spatio-temporal correlation of the uncertain
parameters. The ambiguity set P defined in (3.2) can be extended to include uncertainty regarding
the moments. When the system operator is less confident about the empirical moment estimates,
further robustification of problem (3.1) can be achieved by considering these moments to be inexact
but contained in well-described uncertainty sets, e.g., ellipsoidal [141]. Conversely, the system
operator may impart expert knowledge about the uncertainty to shrink the ambiguity set P , e.g.,
by including higher-order statistical moments [81], or by introducing structural restrictions on
probability distributions such as symmetry [142] or uni-modality [143].
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A�ne policies as recourse actions

For the flexible producers of electricity and natural gas, recourse actions defined in the form of
a�ne policies characterize their response to wind forecast errors realized during the real-time
stage. The real-time production governed by a�ne policies is

‰̃t(›) = ‰t + (1€›t)–t, ’t, (3.3a)

Ë̃t(›) = Ët + (1€›t)—t, ’t, (3.3b)

where ‰t œ RI and Ët œ RK are the nominal quantities produced by the electricity producers
and gas suppliers, respectively, at period t. Adopting a global uncertainty characterization, these
flexibility providers respond to the net uncertainty faced by the system through policies –t œ RI

and —t œ RK , respectively.

Given the simplified representation of flows in the electricity network adopted in [Paper C] using
PTDFs, the changes in the power flows in the lines are given by the responses of producers
–t, contingent to the balancing constraints satisfied for the spatial configuration of wind farms,
demands, and power producers. Therefore, the electricity market clearing in (3.1c) takes the form

1€(‰t + (1€›t)–t) + 1€(Wt ≠ ›t) = 1€”E
t , ’t, (3.4)

where Wt œ RW is the best available point forecast of electricity production from wind farms at
the day-ahead stage. Since the support of ›t spans RW , the infinite-dimensional equality (3.4) is
met almost surely by matching the zero- and first-order coe�cients of uncertainty [129], resulting
in a set of deterministic equalities

1€‰t + 1€Wt = 1€”E
t , ’t, (3.5a)

1€–t = 1, ’t. (3.5b)

The power flows in the lines during the real-time stage are constrained by the capacity limits
applied to both the nominal flows, i.e., considering perfect forecasts of wind farm production,
and changes to it induced by the real-time adjustments in the production schedule to mitigate
the uncertainty. Given the recourse actions, the resulting individual robust chance-constrained
inequalities are approximated by SOC constraints, as discussed later in this section.

For further clarity of notation, the set of electricity producers in I is partitioned into two disjoint
subsets, G collecting all gas-fired power plants and C collecting all non-gas power producers.
The uncertainty response of the the coupled natural gas system is therefore characterized by the
recourse actions allocated to flexible gas suppliers (3.3b) and the real-time adjustments to fuel
demand from the gas-fired power producers kG

¶ –t, ’i œ G. Here, the parameter kG
œ R|G|

collects the fuel conversion factor of the gas-fired power producers. In turn, the state variables of
the gas system, i.e., nodal pressures, flows in pipelines, and the amount of linepack available at a
given period are physically described by the nonlinear, non-convex, and time-coupled equations
in (3.1c) governing the flows in the gas network and the evolution of linepack over the T periods.
Providing an accurate analytical characterization of changes in state variables under this complex
setting is not straightforward. Focusing on first developing the methodology of uncertainty
propagation, [Paper C] approximates this analytical characterization via a�ne functions in the
interest of achieving simplicity of modeling. Therefore, the nodal pressures and flows in the gas
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network at the real-time stage are approximated as a�ne functions of uncertainty:

Í̃t(›) = Ít + (1€›t)÷t, ’t, (3.6a)

Ï̃t(›) = Ït + (1€›t)’t, ’t, (3.6b)

where variables Ít, ÷t œ RM denote the nominal and stochastic components of the nodal gas
pressures, respectively, while Ït, ’t œ RE represent the nominal and stochastic components of
the flows in pipelines. While not directly controllable, the auxiliary recourse variables ÷t and ’t

approximate the real-time feasibility of the state variables given the controllable recourse actions
–t and —t. This implies that real-time feasibility of network state is guaranteed to the extent that
the convex relaxation strategy adopted for the non-convex gas flow equations is tight5.

Convexification strategies for state equations of the gas system

Under the assumption of lossless pressure regulation provided by active pipelines, the flow of gas
in pipelines at the real-time stage, represented by fGN(Ï̃t, Í̃t, Ÿ̃t) = 0 in (3.1c), is given by a set of
stochastic quadratic equalities

Ï̃et(›) |Ï̃et(›)| = kW
e

1
(Í̃mt(›))2

≠ (Í̃mÕt(›))2
2

, ’e = (m, mÕ) œ E , ’t, (3.7)

where parameters kW
œ RE

+ encode the friction coe�cient and geometry of the gas pipelines. The
absolute value operator in the left-hand side of (3.7) preserves the direction of gas flows in the
pipelines. Given Assumption 5, this operator can be dropped since the gas flow directions are
known, thereby reducing the left-hand side of (3.7) to (Ï̃et(›))2. Under the policies given by (3.6),
the equalities in (3.7) are expanded and equivalently replaced by three separate equalities formed
by zero-, first-, and second-order coe�cients of › on both sides, resulting in equalities, defined by
’e = (m, mÕ) œ E , ’t,

Ï2
et = kW

e (Í2
mt ≠ Í2

mÕt) (3.8a)

’2
et = kW

e (÷2
mt ≠ ÷2

mÕt) (3.8b)

’et Ïet = kW
e (÷mt Ímt ≠ ÷mÕt ÍmÕt). (3.8c)

While the equalities (3.8) are deterministic and thus, finite-dimensional, they remain non-convex.
[Paper C] circumvents this by adopting an inner SOC relaxation of (3.8a)-(3.8b) obtained by
equivalently writing these equalities as two-sided quadratic inequalities, wherein the non-convex
quadratic inequalities are dropped. A similar strategy cannot be applied to (3.8c) since both the
resulting inequalities are non-convex due to the presence of bilinear terms. Therefore, a McCormick
relaxation [145] is adopted, i.e., rectangular envelopes based on the known (and estimated) upper
and lower bounds of the variables provide an outer approximation of (3.8c) by a set of linear
inequalities.

Apart from the gas flow equations, the stochastic linear equality fLP
t (Ẫ, Ï̃) = 0 in (3.1c) governing

the evolution of linepack stored in the gas pipelines is reformulated as a set of deterministic
equalities adopting a similar coe�cient matching. These convexification strategies for the state
equations of the gas system under uncertainty propagation are discussed in detail in [Paper C].

5As elaborated upon in Section 3.3, adopting a linearization strategy, [Paper D] provides guarantees for real-time
network feasibility (up to linearization accuracy) for the gas system while focusing on a single-period (no linepack flexibility)
setting and considering a variant of problem (3.1) involving non-robust joint chance constraints. Recently, [144] proposed
an improvement over [Paper C] and [Paper D] by applying recourse actions based on multi-stage linear decision rules to
this problem, thus enabling these guarantees in multi-period settings.



3.2. AFFINE POLICIES FOR HARNESSING CROSS-CARRIER FLEXIBILITY 43

SOC reformulation of robust joint chance constraints

The robust joint chance constraints (3.1b) are approximated as SOC constraints following a two-
step process. First, the requirement of simultaneous satisfaction of the N6 equalities comprising
(3.1b) is relaxed by considering N6 robust individual chance constraints. This results in an outer
approximation of the feasible region of constraint (3.1b), wherein the tightness of the approximation
is adjusted by choosing the individual constraint violation probabilities, Á̂. Second, under the
availability of first- and second-order moments, standard results based on a variant of Chebyshev’s
inequality are used to provide deterministic SOC approximation of the non-convex individual
chance constraints [146, Theorem 2.2]. For instance, given the recourse action in (3.3b) and the
zero-mean assumption, a robust individual chance constraint denoting an upper bound on the
k-th gas supplier’s injection

min
P›œP

P›[Ëkt + (1€›t)—kt 6 Ëk] > (1 ≠ Á̂k), ’t, (3.9)

is reformulated as a SOC constraint of the form
Ú

1 ≠ Á̂k

Á̂k

..—kt1
€Xt

.. 6 Ëk ≠ Ëkt, ’t, (3.10)

where Xt is a factorization of the covariance matrix such that � = XX€ and Ëk œ R+ denotes the
maximum gas injection capacity of the supplier. A similar approximation strategy is applied to all
robust individual constraints comprising (3.1b). This SOC approximation is known to provide
overly conservative solutions as Á̂k æ 0 and approaches infeasibility for Á̂k ¥ 0. Recently, [147]
proposed an exact reformulation of such robust individual chance constraints, alleviating this
conservatism. However, such reformulation is applicable to double-sided linear inequalities,
e.g., stochastic variables admitting a�ne recourse actions that are bounded both above and
below, whereas constraint (3.1b) typically also includes single-sided linear inequalities such as
directionality of gas flows and pressure regulation provided by active pipelines. In [Paper C], the
issues related to high conservatism and potential infeasibility of the SOC approximations of robust
individual chance constraints are addressed by an appropriate choice of Á̂.

Objective function reformulation

The work in [Paper C] assumes linear functions to model the cost of power and gas injections in the
objective function (3.1a). Given the recourse actions defined in (3.3) for the electricity producers
and gas suppliers, the objective function (3.1a) rewrites as

min
V

max
P›œP

EP›

Ë ÿ

tœT

1 ÿ

iœI
cE

i
€(‰it + (1€›t)–it) +

ÿ

kœK
cG

k
€(Ëit + (1€›t)—kt)

2È
, (3.11)

where the set of variables is comprised of nominal and recourse variables collected in a set
V = {‰, Ë, Í, Ï, Â, –, —, ÷, ’}. Moreover, under the zero-mean forecast error assumption, the
expectation operator is applied to eliminate the uncertainty-dependent terms of the objective
function, and consequently, the maximization term in the objective function (3.11) is no longer
applicable. Therefore, the objective (3.11) reduces to the following deterministic linear cost

min
V

Ë ÿ

tœT

1 ÿ

iœI
cE

i
€

‰it +
ÿ

kœK
cG

k
€

Ëit

2È
. (3.12)
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Observe that, unlike the quadratic cost functions discussed in Chapter 2, the objective function (3.12)
does not explicitly penalize the recourse actions. Rather, the cost of mitigation of uncertainty is
implicitly captured by the risk-aware SOC constraints approximating the probabilistic constraints6.

Adopting the a�ne recourse actions, followed by the convex relaxation of the state equations in
the gas system, convexification of robust joint chance constraints (3.1b), and reformulation of the
objective function, the infinite-dimensional problem (3.1) is approximated by a SOCP problem,
provided in Appendix A of [Paper C]. This SOCP problem is solved using o↵-the-shelf commercial
solvers and provides a tractable methodology to study the uncertainty-aware coordination in a
coupled power and natural gas system.

3.2.2 Numerical results

The methodology developed in [Paper C] is evaluated by studying the optimal solution (nominal
dispatch decisions and recourse actions) for a coupled power and natural gas system with high
share of power production from wind farms. The ambiguity set in (3.2) is constructed using wind
forecast scenarios developed for wind farms in Western Denmark [148]. For the robust individual
chance constraints, an identical constraint violation probability, Á̂(·) is chosen for simplicity. Wind
forecast error datasets used to build the ambiguity set and in out-of-sample simulations as well
as the parameters related to the network, production, and consumption in the electricity and gas
systems are given in [Paper C] and an online appendix to the paper.

For a given choice of constraint violation probability, solving the tractable SOCP approximation
of problem (3.1) results in optimal dispatch and a�ne policies allocated to the power producers
and gas suppliers. As exhaustively covered in [Paper C], these allocations depend not only
on the available capacity and cost structure of electricity producers and gas suppliers but also
on the network constraints of both the systems. In particular, a spatially-optimal, cost-e�cient
delivery of energy and flexibility is achieved under uncertainty. Furthermore, considering the fuel
demand from gas-fired power plants to provide flexibility in hours with high wind shares, linepack
flexibility is e↵ectively utilized by dispatching the cheapest gas suppliers in the hours with low
gas demand, storing the excess gas in the pipelines. This enables a cost-e�cient mitigation of the
uncertainty propagated from the electricity system to the gas side, leveraging linepack flexibility.

Trade-o↵ between expected operation cost and robustness to uncertainty

From an uncertainty mitigation perspective, studying the trade-o↵ between the expected operation
cost and the choice of constraint violation probability (a proxy for robustness to uncertainty) is
crucial. While the optimal day-ahead decisions are fixed, out-of-sample simulations are performed
using a test dataset comprised of SÕ = 1, 000 wind realizations scenarios. For a chosen individual
constraint violation probability Á̂, the ex-ante joint constraint violation probability is

�Á̂ = 1
SÕ

ÿ

sÕœSÕ

IsÕ , (3.13)

where the indicator function IsÕ admits a value of 1 if at least one of the N6 inequalities comprising
the robust joint chance constraint (3.1b) is violated for the scenario sÕ. The probability �Á̂ shows the

6This choice of cost functions renders it di�cult to derive meaningful prices for the mitigation of the uncertainty
propagated. As discussed in Section 3.3, [Paper D] overcomes this issue by modeling the cost function of gas injections and
pressure regulation losses as quadratic cost functions.
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Figure 3.3: Expected day-ahead dispatch cost (line plot, referring to the left y-axis) and ex-ante
violation probability (bars, referring to the right y-axis) with the reliability criteria set by the central
system operator, (1 ≠ Á̂). Adapted from [Paper C].

proportion of the ex-ante scenarios that have at least one constraint violated beyond the numerical
tolerance of the optimization solver employed.

For a range of reliability levels, (1 ≠ Á̂), prescribed by the central system operator, Figure 3.3 shows
the expected cost of day-ahead dispatch (line plot with filled circles as markers, referring to the
left-hand y-axis) and the ex-ante out-of-sample violation probability �Á̂ observed (bars, referring
to the right-hand y-axis). The expected cost of dispatch at the day-ahead stage increases with
higher confidence requirement levied by the system operator. Due to the outer approximation
approach adopted for tractability of robust joint chance constraints, the values of �Á̂ are observed
to be generally higher than the individual constraint violation probabilities chosen. However, with
a relatively high expected cost, for reliability criteria (1 ≠ Á̂) = 0.95, an ex-ante joint constraint
violation probability observed is 0.003, which indicates a better robustness to uncertainty than
modeled. Considering the large number of chance constraints involved in the case study, SOC
approximations based on Chebyshev’s inequality leads to infeasibility for reliability criteria set at
(1 ≠ Á̂) > 0.95.

Further results discussed in [Paper C] dive deeper into the observed ex-ante violation probability
�Á̂, studying how they correspond to constraint violations in individual groups of constraints
comprising (3.1b) for various prescribed levels of Á̂. In particular, it is observed that the available
linepack flexibility in the natural gas system was not depleted while mitigating the uncertainty
propagated from the electricity. On the other hand, constraints modeling gas flow directions as
fixed by the system operator before solving problem (3.1), as formalized in Assumption 5, are
violated with a high frequency.

Tightness of convex relaxations

Beyond the out-of-sample simulations, the tightness of the convex relaxations adopted for the
original stochastic non-convex gas flow equations (3.7) is studied to characterize the impact of
uncertainty propagation on state variables. For the equalities in (3.8), a normalized root mean
square relaxation gap parameter is computed, accounting for each equality constraint of the form
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(a) SOC relaxation of (3.8a)
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(b) SOC relaxation of (3.8b)
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(c) McCormick relaxation of (3.8c)

Figure 3.4: Normalized relaxation gaps for the convex relaxations of the non-convex equality (3.7).
Adapted from [Paper C].

Aet = Bet, ’e œ E , ’t relaxed as Aet 6 Bet, such that

� =
Ë 1

T

1
E

ÿ

tœT

ÿ

eœE

1Bı
et ≠ Aı

et

Bı
et

2È 1
2
. (3.14)

Here, the superscript ı indicates the expression at the left-hand or right-hand side evaluated
at the optimum. For Á̂ = 0.05, a �-value of 0.78, 1.67, and 2.87 was observed for the equalities
obtained by separating the terms that are uncertainty-independent (3.8a), quadratically- (3.8b),
and linearly-dependent (3.8c) on uncertainty, respectively. The heatmaps in Figure 3.4 decompose
the �-value obtained for the three equalities in (3.8) for the various pipelines and time periods.
While the relaxation is su�ciently tight for the uncertainty-independent terms of the original
equation, shown in Figure 3.4(a), it is unsatisfactory for the uncertainty-dependent terms7. In
particular, the equality obtained by matching the second-order coe�cients of uncertainty (3.8b),
exhibits high relaxation gaps in the early hours of the simulation horizon. On the one hand, this
can be explained by the non-radial and cyclical topology of the gas network considered in the
case study. On the other hand, the network topology e↵ect is exacerbated by the uncertainty
propagation from the electricity side. This mandates excess gas injections in the early hours to
have su�cient linepack flexibility to cater to the gas withdrawal demands by gas-fired power

7Several works (see, e.g., [149], [150], [151]) have proposed approaches to improve the exactness of such SOC and
McCormick relaxations of non-convex quadratic equalities based on an iterative tightening of the variable bounds or via
augmenting the relaxation with tighter convex quadratic envelopes.
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plants to provide flexibility to the coupled electricity system. Finally, McCormick relaxation of the
non-convex equality corresponding to first-order coe�cients of uncertainty (3.8c) exhibits poor
relaxation exactness. In addition to the sub-optimal, loose bounds on the variables that influence
the tightness of McCormick relaxation, this can be attributed to adversely negative values of the
auxiliary recourse variables ÷ and ’ that model the uncertainty response of state variables, i.e.,
pressures and flows, respectively.

In summary, the numerical results of [Paper C] underscore the importance of establishing a strong
analytical dependency between the state variables and the uncertainty faced by the natural gas
system to e↵ectively mitigate it without adversely impacting the operational constraints. In
particular, considering the relaxation gaps induced, the convex relaxation approach adopted in
[Paper C] towards reaching a tractable reformulation of problem (3.1) needs rethinking. Further, the
assumption of uni-directional gas flows adopted to circumvent integrality constraints is restrictive
while studying uncertainty propagation. Section 3.3 discusses the methodology and results from
[Paper D], which bypasses the simplifying assumptions adopted in [Paper C].

3.3 Stochastic control and pricing in natural gas networks

To establish a strong convex dependency between uncertainty propagated from the electricity
system and the resulting changes in state variables of the coupled gas system, [Paper D] develops
optimal control policies for gas injections and pressure regulation rates to provide real-time
control inputs for the gas system operators. Dropping Assumptions 5-6, [Paper D] models the
bi-directional flow of gas in pipelines and considers active pipelines that consume natural gas
to provide pressure regulation. Lastly, to alleviate the conservatism associated with the SOC
reformulation of robust joint chance constraints, [Paper D] considers a variant of problem (3.1)
that involves non-robust joint chance constraints8.

In the following, Section 3.3.1 outlines the methodological contributions of [Paper D] with a
specific focus on the linearization strategy adopted for convexification of the non-convex gas flow
equations under uncertainty. Section 3.3.2 presents the analytical results underlying the proposed
pricing for uncertainty and variance mitigation in the natural gas system. Lastly, the numerical
results in Section 3.3.3 highlight the ability of the optimal control actions in mitigating uncertainty
and variance propagated to natural gas systems.

3.3.1 Towards an analytical gas network response model

As discussed in Section 3.1.2, problem (3.1) can be solved to optimality under deterministic settings.
Using best-available forecasts for the uncertainty, [Paper D] solves a deterministic, non-convex
equivalent of the stochastic problem (3.1) to obtain a stationary point. This stationary point
forms the basis for linearization of the nonlinear, non-convex Weymouth equation denoted by
fGN(Ï̃t, Í̃t, Ÿ̃t) = 0. The modeling in [Paper D] ignores linepack flexibility and rather focuses on
pressure regulation provided by lossy compressors and valves to mitigate the impact of uncertainty
propagation. For simplicity of notation, each node is assumed to host a single gas supplier or
demand and the subscripts t are dropped hereafter.

8However, [Paper D] provides theoretical results on the analytical gas network response model that hold for a variety of
probability distributions that uncertainty of electricity demand and generation from weather-dependent RES are commonly
modeled to obey [140].
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Convexification of gas flow equations via linearization

For clarity of exposition, the following introduces some additional notation, augmenting the gas
system variables. First, let fĩ(›) œ RM

+ denote the squared nodal pressures in the gas system, such
that fĩm(›) = (Í̃m(›))2, ’m œ M. Next, let the topology of the gas network graph be described by
a node-edge incidence matrix A œ RM◊E , such that

Ak¸ =

Y
_]

_[

+1, if k = m

≠1, if k = mÕ

0, otherwise
, ’¸ = (m, mÕ) œ E .

The non-convex quadratic gas flow equations (3.7) can be rewritten in a vector form as

Ï̃(›) ¶ |Ï̃(›)| = diag[kW](A€fĩ(›) + Ÿ̃(›)), (3.15)

where diag[kW] is a diagonal matrix collecting the pipeline constants. Let the equalities in (3.15) be
denoted as fGN(Ï̃, fĩ, Ÿ̃) = 0 and approximated, following a first-order Taylor series expansion, as

fGN(Ï̃, fĩ, Ÿ̃) ¥ fGN(Ï̊, fi̊, Ÿ̊) + J (Ï̊)(Ï̃ ≠ Ï̊) + J (fi̊)(fĩ ≠ fi̊) + J (Ÿ̊)(Ÿ̃ ≠ Ÿ̊) = 0, (3.16)

where J (x) œ RE◊n denotes the Jacobian of (3.15) w.r.t. an arbitrary vector x œ Rn and (Ï̊, fi̊, Ÿ̊) is a
stationary point retrieved by solving a deterministic variant of problem (3.1), by setting ”̃G(›) = ”G.
Since fGN(Ï̊, fi̊, Ÿ̊) = 0 at the stationary point, after rearrangement of terms, equation (3.16)
provides an a�ne relation between the gas flows, nodal pressures, and pressure regulation around
the stationary point:

Ï̃ ≠ Ï̊ = J (Ï̊)≠1
J (fi̊)(fi̊ ≠ fĩ) + J (Ï̊)≠1

J (Ÿ̊)(Ÿ̊ ≠ Ÿ̃)
… Ï̃ = J (Ï̊)≠1(J (fi̊)fi̊ + J (Ÿ̊)Ÿ̊) + Ï̊¸ ˚˙ ˝

g1(Ï̊,fi̊,Ÿ̊)

≠J (Ï̊)≠1
J (fi̊)¸ ˚˙ ˝

G2(Ï̊,fi̊)

fĩ ≠J (Ï̊)≠1
J (Ÿ̊)¸ ˚˙ ˝

G3(Ï̊,Ÿ̊)

Ÿ̃

… Ï̃ = g1(Ï̊, fi̊, Ÿ̊) + G2(Ï̊, fi̊)fĩ + G3(Ï̊, Ÿ̊)Ÿ̃. (3.17)

Here, parameters g1 œ RE , G2 œ RE◊M , and G3 œ RE◊E encode the sensitivity of gas flow rates
to the nodal pressures and pressure regulation rates. These sensitivities are well-defined unless
the stationary point (Ï̊, fi̊, Ÿ̊) is a bifurcation point for the non-convex problem. The system of
equations defined by (3.17) is rank-deficient since rank(G2) =M ≠ 1, thereby resulting in infinitely
many solutions. However, as the gas network graph is connected, E Ø M ≠ 1 holds necessarily,
and therefore, a unique solution can be retrieved by choosing a reference network node9, r œ M,
such that fĩr = fi̊r.

Given the uniquely-characterized linearization (3.17) of the non-convex equality (3.15), the original
deterministic non-convex problem and its deterministic convex approximation counterpart produce
equivalent solutions at the stationary point. Consequently, the deterministic convex approximation
can be used as a proxy to develop a stochastic gas system optimization problem with probabilistic
linear equalities and inequalities. While the stochastic gas system optimization problem is
presented in the following, formulations of the deterministic non-convex problem and its convex
approximation can be found in [Paper D].

9In practice, a node with a large and constant gas injection is typically selected as a reference node [136]. However, any
node that does not host a variable gas injection or extraction and is not a receiving node for active pipelines is a potential
candidate.
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Chance-constrained gas system optimization

Let the set of active pipelines Ea be partitioned into disjointed subsets Ec, hosting compressors
and Ev, hosting valves. Let a sign convention be adopted such that Ÿ̃e(›) > 0, ’e œ Ec and
Ÿ̃e(›) 6 0, ’e œ Ev. While compressors increase the pressure at the receiving node of the active
pipeline compared to the sending node, activation of valves reduces the pressure along the active
pipeline. Active pipelines provide these pressure regulation services by consuming gas. Let the
matrix parameter B œ RM◊E relate the active pipelines to their sending nodes while accounting
for the losses be œ R+ incurred while providing pressure regulation services, i.e.,

Bke =

Y
_]

_[

be, if k = m, k œ Ec

≠be, if k = m, k œ Ev

0, otherwise
, ’e = (m, mÕ) œ E .

Consequently, the gas supply-demand balance fGM(‰̃, Ë̃, Ÿ̃, Ï̃, ”G) = 0 in (3.1c) takes the form

AÏ̃(›) = Ë̃(›) ≠ BŸ̃(›) ≠ ”̃G(›), (3.18)

where the demand ”̃G(›) = ”G + › is a random variable, modeling the random gas extraction rates
from gas-fired power producers, such that parameter ”G

œ RM denotes the best-available gas
extraction forecasts and › œ RM is the random forecast error associated with them. The non-robust
variant of problem (3.1) studying mitigation of uncertainty propagated to the gas system writes as

min
Ë̃,Ÿ̃,Ï̃,fĩ

EP› [c€
1 Ë̃(›) + Ë̃(›)€diag[c2]Ë̃(›)] (3.19a)

s.t. P›

S

WWU

AÏ̃(›) = Ë̃(›) ≠ BŸ̃(›) ≠ ”̃G(›),
Ï̃(›) = g1 + G2fĩ(›) + G3Ÿ̃(›),
fĩr(›) = fi̊r

T

XXV
a.s.= 1, (3.19b)

P›

C
fi 6 fĩ(›) 6 fi, Ë 6 Ë̃(›) 6 Ë,

Ÿ 6 Ÿ̃(›) 6 Ÿ, Ï̃e(›) > 0, ’e œ Ea

D
> 1 ≠ Á, (3.19c)

where c1, c2 œ RM
+ represent the linear and quadratic cost components associated with the gas

injections at the M nodes of the network. Appropriately-dimensioned parameter pairs (fi, fi),
(Ë, Ë), and (Ÿ, Ÿ) denote the bounds on nodal pressures, gas injection, and pressure regulation
rates, respectively. The constraints in problem (3.19) are linear equalities and inequalities, i.e.,
non-convexity of problem arises solely from the probabilistic constraints. Problem (3.19) remains
infinite-dimensional, thereby requiring recourse actions to achieve tractability. However, since the
feasible region defined by constraints (3.19b)-(3.19c) is polyhedral, a�ne control policies provide
an exact analytical characterization of uncertainty response in contrast to the approximation they
provide in problem (3.1), as remarked in Section 3.2.1.

Control policies and tractable reformulation

The analytical network response model of gas system towards uncertain gas extraction rates ”̃G(›)
consists of a functional dependency of the stochastic variables on the uncertainty. Relying on a�ne
policies defined under a nodal characterization of uncertainty, the recourse actions by controllable
stochastic variables, i.e., gas injection rates Ë̃(›) and pressure regulation rates Ÿ̃(›) are given by

Ë̃(›) = Ë + —› (3.20a)

Ÿ̃(›) = Ÿ + “›. (3.20b)
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Here, the variables Ë œ RM and Ÿ œ RE denote the nominal value, while — œ RM◊M and
“ œ RE◊M represent the recourse actions by gas injections and pressure regulation provided by
active pipelines during the real-time stage to mitigate the uncertainty. Observe that, contrary to
the a�ne policies defined in (3.3), the policies in (3.20) provide a nodal response to uncertainty.
Beyond the controllable actions by gas injections and pressure regulation rates defined in (3.20),
Proposition 1 formalizes the analytical relationship between the state variables of the gas system
and the uncertainty propagated to it.

Proposition 1 (Gas System Uncertainty Response Model). Given the control policies (3.20), the
response of the natural gas system to uncertain gas withdrawal rates ”̃G(›) = ” + ›, where › ≥ P›, is
analytically characterized by

(i) State variables response: The stochastic nodal gas pressures and the flow rates in pipelines are
given by a�ne functions

fĩ(›) = fi + Ğ2(— ≠ Ĝ3“ ≠ diag[1])› (3.21a)

Ï̃(›) = Ï + (G̀2(— ≠ diag[1]) ≠ G̀3“)›, (3.21b)

where Ğ2, G̀2, Ĝ3, G̀3 are constants obtained by linear transformations on G2 and G3.

(ii) Network admissibility: The gas network response model, comprised of (3.20) and (3.21a)-(3.21b),
is network admissible if the nominal and recourse variables obey

AÏ = Ë ≠ BŸ ≠ ” (3.21c)

(— ≠ B“)€1 = 1, (3.21d)

Ï = g1 + G2fi + G3Ÿ, (3.21e)

fir = fi̊r, [—]€r = 0, [“]€r = 0. (3.21f)

The first part of Proposition 1 resolves the stochastic nodal pressures and flow rates into nominal
and recourse components, wherein the recourse components involve the control policies allocated
to gas injections and pressure regulation. This relationship is derived through substitutions,
followed by rearrangement of terms. A crucial step underlying the derivation is obtaining a
pseudo-inverse of the matrix AG2, which is non-invertible due to the singularity of A for all gas
network topologies, except radial networks10. The second part of Proposition 1 ensures that the
nominal and recourse actions satisfy the supply-demand balance and the gas flow constraints
for all realizations of uncertainty. This is shown by a separation of coe�cients in the almost-sure
constraints (3.19b) that are zero- and first-order in the uncertain variable ›, as in Section 3.2.1.
Appendix A of [Paper D] elaborates the intermediate steps involved in deriving the gas system
uncertainty response model.

Given the control policies, a tractable reformulation to the chance-constrained gas network
optimization problem (3.19) is obtained by employing the Bonferroni approximation of the joint
chance constraints in (3.19c) and a reformulation of the expected cost in the objective (3.19a).
First, selecting a vector of constraint violation probabilities Á̂ œ R

N6
+ such that Á̂k = Á

N6+
, ’n =

1, 2, ..., N6, the joint chance constraint in (3.19c) is replaced by N6 individual scalar chance

10As elaborated in Appendix A of [Paper D], the pseudo-inverse is evaluated by inverting a matrix of lower dimensions
than AG2, where the dimension reduction is achieved by removing the row and column corresponding to the pressure
reference node, r.
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constraints [130]. Each individual scalar chance constraint involving an arbitrary recourse variable
a œ RM of the form

P›[›€a 6 b] > 1 ≠ Á̂ (3.22a)

is then replaced by its analytical reformulation as a SOC constraint

zÁ̂ÎXaÎ 6 b ≠ E›[›€a], (3.22b)

where zÁ̂ > 0 is a safety parameter as defined in [60] and X is a factorization of the covariance
matrix � such that � = XX€. The left-hand side of (3.22b) is the margin that ensures constraint
feasibility given the parameters of the forecast errors distribution, i.e., a larger safety parameter zÁ̂

improves system security. Typically, the system operator chooses zÁ̂ based on the knowledge about
distribution P›, yet it always increases as the risk tolerance Á̂ reduces. As discussed in Section 3.1.2,
this approach provides an inner convex approximation of the joint chance constraints.

Under control policies (3.20), the objective function (3.19a) modeling the quadratic cost of gas
injections is rewritten as

min
Ë,Ÿ,Ï,fi

—,“

EP›
#
c€

1 (Ë + —›) + (Ë + —›)€diag[c2](Ë + —›)
$
.

With the zero-mean assumption of › and using the property that expectation of the outer product
of a zero-mean random variable results in its covariance, i.e., EP› [››€] = �, the objective function
adopts the following deterministic equivalent form

min
Ë,Ÿ,Ï,fi

—,“

c€
1 Ë + Ë€diag[c2]Ë + Tr[—€diag[c2]—�], (3.23)

which is a convex quadratic function in the variables Ë and —. As discussed in Chapter 2, it is
of computational and analytical interest to reformulate the quadratic cost terms as rotated SOC
constraints. The constraint reformulation of quadratic terms in (3.23) is covered in [Paper D].

Variance of state variables

While the control policies (3.20) are optimized such that uncertainty is mitigated at the minimum
expected cost, it is likely that solutions that induce a high variance of the state variables are
produced. For instance, in the electricity system, such optimal uncertainty mitigation solutions
have been shown to increase the variance of flows in the power lines, thereby requiring a variance
minimization strategy [67]. For e↵ective mitigation of the uncertainty propagated, it is crucial to
model the variance of state variables in the gas system. Equations (3.21a)-(3.21b) characterize the
impacts of uncertainty on the state variables via functions that are a�ne in the control inputs — and
“. Therefore, an optimal selection of these control inputs is performed such that the variance of state
variables during the real-time operation stage is minimized. As they admit conic reformulations, it
is preferable to minimize the standard deviations of the state variables instead of their variance.

Let variables sfi
œ RM and sÏ

œ RE denote the standard deviations of nodal pressures and gas
flows in pipelines, respectively. For given fixed values of — and “, the variance of pressures and
flows can be minimized by solving the following SOCP problem

min
sfi,sÏ

cfi€sfi + cÏ€sÏ (3.24a)

s.t.
...X[Ğ(— ≠ Ĝ3“ ≠ diag[1])]€n

... 6 sfi
m, ’m œ M (3.24b)

...X[G̀(— ≠ diag[1]) ≠ G̀3“]€e
... 6 sÏ

e , ’e œ E , (3.24c)
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where cfi
œ RM and cÏ

œ RE are terms penalizing the variance of state variables. SOC constraints
(3.24b)-(3.24c) are tight at optimality. The objective function in the final tractable SOCP form of
problem (3.19) involves a co-optimization of the decision variables in (3.23) and the standard
deviation of the state variables. The selection of penalty terms results in a trade-o↵ between cost
minimization and variance minimization, i.e., increasing variance penalty reduces the variance of
corresponding state variable while increasing the cost of dispatch. Numerical results in Section 3.3.3
discuss the cost-variance trade-o↵ in detail.

Approximation errors and real-time feasibility

While it enables a tractable chance-constrained problem formulation, the linearization strategy
adopted for convexification of the non-convex gas flow constraints (3.15) introduces approximation
errors. These errors stem from the first-order Taylor series expansion employed to approximate
the non-convex relationship between pressures and flows under uncertain gas extraction rates.
As discussed in Section 3.1.2, such approximation errors may lead to constraint violations in
the gas network during real-time operation. To address this, [Paper D] provides a priori worst-
case performance guarantees that these approximation errors do not exceed a certain threshold.
Since gas networks in practice are typically limited by nodal pressures, these state variables are
exclusively treated in [Paper D] to provide the feasibility guarantees.

Let fĩı(›) denote a vector of stochastic nodal pressures, retrieved from the optimal solution to the
SOCP reformulation of problem (3.19), such that the a�ne function in (3.21a) rewrites as

fĩı(›) = fiı + Ğ2(—ı
≠ Ĝ3“ı

≠ diag[1])›, (3.25)

where the superscript ı indicates optimal values. In contrast to the anticipated pressure changes
characterized by (3.25), for a given forecast error realization ‚› and given optimal control policies
—ı and “ı, the actual nodal pressures fiı(›) can be retrieved by solving a projection problem given
in (3.26). Problem (3.26) projects the optimal control inputs obtained from the SOCP problem to
solve a deterministic non-convex gas network optimization problem, specific to the realization ‚›:

fiı(‚›) œ argmin
Ë,Ÿ,Ï,fi

...Ë̃ı(‚›) ≠ Ë
... +

...Ÿ̃ı(‚›) ≠ Ÿ
... (3.26a)

s.t. AÏ = Ë ≠ BŸ ≠ (”G + ‚›), (3.26b)

Ï ¶ |Ï| = diag[kW](A€fi + Ÿ), (3.26c)

fi 6 fi 6 fi, Ë 6 Ë 6 Ë, (3.26d)

Ÿ 6 Ÿ 6 Ÿ, Ïe > 0, ’e œ Ea, (3.26e)

where the optimal control actions are given by Ë̃ı(‚›) = Ëı + —ı ‚› and Ÿ̃ı(‚›) = Ÿı + “ı ‚›. Using the
stationary point from problem (3.26), the approximation errors induced in nodal pressures can be
computed a priori. For a given realization ‚›, these approximation errors �fim(‚›), ’m œ M are
the Euclidean distances between the actual non-convex solution fiı(‚›) and the one obtained by
deploying the optimal control policies, i.e.,

�fim(‚›) =
...fĩı

m(‚›) ≠ fiı
m(‚›)

..., ’m œ M. (3.27)
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centrally-solved

uncertainty- and variance-aware

gas market-clearing optimization

price-setter’s problem

min. prices
network operator’s problem

max. congestion rent

gas supplier 1
max. profit

...
gas supplier M

max. profit

active pipeline 1
max. profit

...
active pipeline E

max. profit

price inelastic consumers

≈∆

equilibrium problem

Figure 3.5: Equivalence between the uncertainty- and variance-aware gas market-clearing opti-
mization problem and an equilibrium problem involving various market agents.

Theoretically, a worst-case bound on the pressure at node m can be computed by solving the
following problem in auxiliary variable y œ R+

min
y

y (3.28a)

s.t. �fim(›) ≠ y 6 0, ’› œ P›, (3.28b)

such that a forecast error realization ‚› corresponding to the largest Euclidean distance given
by (3.27) is selected from the distribution P›. However, the infinite number of constraints in
(3.28b) make the problem (3.28) computationally intractable. To resolve that, [Paper D] adopts a
sample-based reformulation of problem (3.28) such that the constraint (3.28b) is enforced for a ‚S
number of samples drawn from P›, i.e.,

min
y

y (3.29a)

s.t. �fim(‚›s) ≠ y 6 0, ’s = 1, 2, . . . , ‚S. (3.29b)

The expression in [152, Corollary 1] provides the minimum number of samples required to provide
probabilistic guarantees that the pressure approximation error at a given node will remain under
the optimal solution to problem (3.29), yı. Here, yı refers to the worst-case approximation error.

3.3.2 Towards pricing the mitigation of uncertainty propagation

The SOCP formulation of the gas system optimization under uncertainty enables an e�cient
pricing scheme for natural gas systems such that the prices reflect the mitigation of the uncertainty
via adjustments by flexible agents. In addition, having closed-form expressions for the variance
of state variables paves the path for developing an e�cient pricing scheme to remunerate (or
penalize) agents in the natural gas system based on their contribution towards mitigating (or
aggravating) the variance. Using LP and SOCP duality, [Paper D] proposes an uncertainty- and
variance-aware pricing scheme for natural gas systems, discussed in the following.

Interpretation as a competitive equilibrium

As illustrated in Figure 3.5, a stochastic gas pricing scheme is developed by leveraging the
equivalence of the centrally-solved uncertainty- and variance-aware SOCP gas market clearing
problem with an equilibrium problem involving various agents. These agents are: (i) a price-setter,
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Nominal and recourse balance constraints for network admissibility:

AÏ = Ë ≠ BŸ ≠ ”G : (⁄c) (3.30a)

(— ≠ B“)€1 = 1 : (⁄r) (3.30b)
Ï = g1 + G2fi + G3Ÿ, fir = fi̊r : (⁄w) (3.30c)

Coupling constraints on nodal pressure variance and limits, ’m œ M:
...X[Ğ(— ≠ Ĝ3“ ≠ diag[1])]€n

... 6 sfi
n : (ufi

m, ⁄fi
m) (3.30d)

zÁ̂

...X[Ğ(— ≠ Ĝ3“ ≠ diag[1])]€m
... 6 fim ≠ fim, ’m œ M : (ufi

m, ⁄fi
m) (3.30e)

zÁ̂

...X[Ğ(— ≠ Ĝ3“ ≠ diag[1])]€m
... 6 fim ≠ fim, ’m œ M : (ufi

m, ⁄
fi
m) (3.30f)

Coupling constraints on flow variance and directionality:
...X[G̀2(— ≠ diag[1]) ≠ G̀3“]€e

... 6 sÏ
e , ’e œ E : (uÏ

e , ⁄Ï
e ) (3.30g)

zÁ̂

...X[G̀2(— ≠ diag[1]) ≠ G̀3“]€e
... 6 Ïe, ’e œ Ea : (uÏ

e , ⁄
Ï
e ) (3.30h)

responsible for seeking optimal prices for the coupling constraints involving the various agents, (ii)
a network operator, maximizing the expected congestion rent in the gas network, (iii) a set of gas
suppliers, maximizing their expected profits from selling gas and mitigating the uncertainty and
variance, (iv) a set of active pipelines, maximizing their expected profits from pressure regulation
and from mitigating the uncertainty and variance, and lastly, (v) a set of inflexible, inelastic
consumers facing stochastic gas demand.

The coupling constraints in the centrally-solved uncertainty- and variance-aware gas market,
which form the basis of the pricing scheme are given by (3.30). Lagrange multipliers associated
with the constraints are denoted in parentheses next to them. The coupling constraints modeled as
linear equalities comprised of: (i) nominal gas balance in (3.30a) and associated nodal price of gas
⁄c

œ RM , (ii) balance of recourse actions to mitigate uncertainty in (3.30b) and associated price
⁄r

œ RM , and (iii) linearized gas flow equation in (3.30c) and associated price ⁄w
œ RE .

The SOC coupling constraints (3.30d)-(3.30h) admit tuples of dual variables associated with them.
These SOC coupling constraints model the standard deviation of nodal pressures and flows in
pipelines in (3.30d) and (3.30g), respectively, and network limits on the state variables, i.e., upper
and lower bounds on nodal pressures given by (3.30e)-(3.30f), and lastly, the uni-directionality of
flows in active pipelines in (3.30h). As discussed in Appendix C of [Paper D], for each of the SOC
constraints in (3.30d)-(3.30h), a dual variable ⁄ œ R+ and a vector u œ RM exist such that each
element of u corresponds component-wise to the uncertainty vector ›. From SOCP dual feasibility
condition, an optimal solution under strong duality is attained for ÎuÎ 6 ⁄. Therefore, each SOC
constraint is separable into a set of prices ⁄, u1, u2, . . . , uM , thereby enabling the decomposition of
revenues arising from them.

Expressions in (3.31) provide a functional representation of the various revenue streams for the
agents in the gas system. Exact characterizations of these linear functions r(·) representing the
revenue terms are in [Paper D]. Deterministic gas market proposals are limited in characterizing
revenue terms corresponding to nominal balance and network congestion, thus resorting to
externalized costs of recourse actions to mitigate uncertainty as well as the variance of state
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variables resulting from it. In contrast to that, the uncertainty- and variance-aware pricing scheme
internalizes these aspects by involving payments made to flexible gas suppliers and pressure
regulation assets in the network for their contribution towards mitigating uncertainty, congestion,
and variance in the natural gas network.

RË
m = rË

1 (Ëm, ⁄c
m)¸ ˚˙ ˝

nominal
payment

+ rË
2 ([—](m,:), ⁄r

m)
¸ ˚˙ ˝

recourse
payment

+ zÁ̂ rË
3 ([—](m,:), ufi, ufi, uÏ)

¸ ˚˙ ˝
congestion
payment

+ rË
4 ([—](m,:), ufi, uÏ)

¸ ˚˙ ˝
variance
payment

(3.31a)

RŸ
e = rŸ

1 (Ÿe, ⁄c, ⁄w)¸ ˚˙ ˝
nominal
payment

+ rŸ
2 ([“](e,:), ⁄r)

¸ ˚˙ ˝
recourse
payment

+ zÁ̂ rŸ
3 ([“](e,:), ufi, ufi, uÏ)

¸ ˚˙ ˝
congestion
payment

+ rŸ
4 ([“](e,:), ufi, uÏ)

¸ ˚˙ ˝
variance
payment

(3.31b)

Rrent = rrent
1 (Ï, ⁄c, ⁄w, ⁄Ï)¸ ˚˙ ˝

flow congestion rent

+ rrent
2 (fi, ⁄w, ⁄fi, ⁄fi)¸ ˚˙ ˝
pressure congestion rent

+ rrent
3 (sfi, sÏ, ⁄fi, ⁄Ï)¸ ˚˙ ˝

variance rent

(3.31c)

R”
m = r”

1(”G
m, ⁄c

m)¸ ˚˙ ˝
nominal
payment

+ r”
2(⁄r

m)¸ ˚˙ ˝
recourse
payment

+ zÁ̂ r”
3(ufi, ufi, uÏ)¸ ˚˙ ˝

congestion
payment

+ r”
4(ufi, uÏ)¸ ˚˙ ˝

variance
payment

(3.31d)

For the flexibility providers, i.e., gas suppliers in (3.31a) and active pipelines (3.31b), each agent
receives payments towards providing nominal supply and pressure regulation services (nominal
payment), mitigation of uncertainty (recourse payment), reducing congestion in the gas network
(congestion payment), and minimizing the variance of state variables (variance payment). First,
note that all revenue terms, except the nominal payments, depend on the control policies allocated
to the agents. Second, observe that the congestion payments are a function of safety parameter
zÁ̂ selected by the system operator for the reformulation of the chance constraints, indicating
that this revenue stream increases as the system operator’s risk tolerance reduces. Third, the
variance payment terms are proportional to the variance penalties cfi, cÏ set by the system operator.
This proportionality results from the fact that at the optimal solution, the prices ⁄fi and ⁄Ï in
(3.30d) and (3.30g) are attained such that ⁄fi = cfi and ⁄Ï = cÏ. Next, the congestion rent in
(3.31c) includes the deterministic components associated with the shadow prices of linearized
gas flow equations, the unidirectionality of active pipelines, and the nodal pressure limits as well
as stochastic components involving the variance of pressures and flows. Finally, the inflexible,
inelastic consumers are charged in (3.31d) according to their consumption as well as contribution
to uncertainty and variance in the gas system.

Economic properties of the competitive equilibrium

The payments described in (3.31) result in an uncertainty- and variance-aware competitive spatial
price equilibrium in the gas system. In what follows, the market equilibrium is formalized and the
satisfaction of desired economic properties are elaborated upon.

Theorem 4 (Gas system competitive equilibrium). The centrally-solved uncertainty- and variance-aware
gas market-clearing optimization problem is equivalent to a competitive spatial price equilibrium among the
gas system agents, shown in Figure 3.5, such that

(i) Each gas supplier at node m œ M maximizes expected profit when receiving payments as per (3.31a).

(ii) Each active pipeline e œ Ea maximizes expected profit when receiving payments as per (3.31b).
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(iii) The network operator maximizes the expected congestion rent characterized by (3.31c).

(iv) The expected payment by consumer located at node m œ M is minimized when they are charged as
per (3.31d).

Theorem 4 is proved in Appendix D of [Paper D] by the equivalence of the KKT optimality
conditions of the optimization problem and the individual profit-maximization problems of the
gas suppliers, active pipelines, the price setter, and the gas network operator. Being inflexible
and inelastic, consumers demonstrate an infinite utility and therefore, do not employ individual
utility maximization problems. The equivalence between optimization and market equilibrium
established by Theorem 4 holds under certain common assumptions. First, the primal SOCP
market-clearing optimization problem and its dual problems are essentially strictly feasible, i.e.,
they satisfy the constraint qualifications necessary for strong duality to hold. Second, the gas
market is perfectly competitive, i.e., no market agent in Figure 3.5 exhibits strategic behavior and
therefore, acts according to its true preferences. Lastly, the information on uncertainty distribution
P› is consistent and symmetric for all the agents11.

As discussed in Chapter 2.2.3, competitive market designs are evaluated for their satisfaction
of economic properties that guarantee the e�ciency of the market, cost recovery for the market
participants, and revenue adequacy of the market. Under the uniform pricing scheme adopted in
[Paper D], the following theorem formalizes the conditions under which these desired economic
properties are satisfied.

Theorem 5 (Economic properties). Given the equivalence between the centrally-solved optimization
problem and the competitive market equilibrium established by Theorem 4, the following economic properties
hold at optimality:

(i) Market e�ciency: Under the assumption of perfect competition, social welfare is maximized in
expectation, i.e., no agent has incentives to unilaterally deviate from the market-clearing outcomes.

(ii) Cost recovery: If the variable control actions in the gas system are bounded by zero, i.e., Ë = 0, Ÿe =
0, ’e œ Ec and Ÿe = 0, ’e œ Ev, then the payments (3.31a) and (3.31b) are su�cient to recover
expected costs for the gas suppliers and active pipelines, respectively.

(iii) Revenue adequacy: If a gas network linearization following (3.17) is achieved such that g1 = 0 and
the nodal pressures are bounded below by zero, i.e., fi = 0, then the payments described in (3.31) are
revenue adequate in expectation, i.e., they satisfy

ÿ

mœM
R”

m >
ÿ

mœM
RË

m +
ÿ

eœE
RŸ

e .

The property of market e�ciency in Theorem 5 is proved under the conditions of perfect competition
involving rational and self-interested agents in the gas network and is given by the equivalent
KKT optimality conditions of the optimization and equilibrium problems. Cost recovery for the
gas suppliers and active pipelines hosting compressors and valves is proved by showing that the

11Here, information asymmetry refers to market agents solving their individual profit maximization problems with
di↵erent probabilistic characterizations of the common forecast error uncertainty. Recent works, e.g., [153], have studied
this in the context of electricity markets, wherein the equivalence of the centralized optimization and the equilibrium
problem no longer holds, with the divergence depending on the degree of information asymmetry among agents.
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dual problem to the individual profit maximization problems of these agents necessarily evaluates
to non-negative values at optimality. This non-negative dual objective evaluation relies on the
common assumption of a zero lower bounds on the non-negative variables (Ë, Ÿe, ’e œ Ec) and
zero upper bounds on non-positive variables (Ÿe, ’e œ Ev), similar to Chapter 2.2.3. Lastly, revenue
adequacy is proved by rearranging terms in the KKT optimality conditions and is established
under two conditions. The first condition arises from the linearization of the non-convex gas
flow equations and is not expected to be satisfied in practice. However, a non-zero g1 leads
to an additional payment term, corresponding to the linearization operating point, charged to
consumers12 in (3.31d). Similar to cost recovery, the second condition relies on a gas network
designed such that lower bounds of nodal pressures are 0. However, numerical results in [Paper D]
demonstrate that revenue adequacy holds in practice even when this condition is not satisfied.

The desired economic properties in Theorem 5 are given for expected allocations, i.e, under the
assumption that the nominal and recourse balance in the gas system, characterized by the equalities
(3.21c)-(3.21d) in the network admissibility constraints, hold at the optimum. However, feasibility
of the centrally-solved SOCP optimization problem ensures that these constraints are always
met. Consequently, the expected optimal allocations are viable (in the sense of [31, 82]) for every
realization ‚› drawn from a probability distribution consistent with the distributional assumption
levied on the uncertainty ›. Thus, for a given choice of safety parameter zÁ̂, Theorem 5 holds for
the expected value and every realization ‚› drawn from the distribution P› characterized by a zero
mean and covariance matrix � used in reformulation of the chance constraints, as shown in (3.22).

3.3.3 Numerical results

To evaluate the uncertainty mitigation, numerical experiments on a 48-node natural gas network
with 22 stochastic gas extraction nodes were performed. For the stochastic gas extractions, the
forecast error › was assumed to be drawn from a zero-mean multivariate Gaussian distribution
with a standard deviation of 10%. Consequently, the safety parameter zÁ̂ is given by the inverse
cumulative distribution function of the standard Gaussian distribution evaluated at (1 ≠ Á̂)-th
quantile [60]. The joint constraint violation probability Á is set at 1%. Details on the gas network
parameters as well as the costs and constraints of the market agents are in [Paper D].

The proposed chance-constrained gas system optimization is benchmarked against the prevalent
deterministic gas system optimization using out-of-sample simulations. Without considering
uncertainty, the deterministic approach leads to a least-cost dispatch, optimal w.r.t. the nominal gas
extraction rates. However, the deterministic policies lead to real-time infeasibility for more than
50% of the out-of-sample forecast error realizations considered. On the other hand, the proposed
approach leads to allocations of control policies that enable e↵ective mitigation of uncertainty at
an additional cost of 1.6% over the deterministic case. At the same time, the control inputs in
the proposed methodology remain feasible during the real-time operation stage with a reliability
level of (1 ≠ Á) = 99%, while requiring minimal e↵ort to restore the feasibility of real-time gas
flows. The worst-case approximation errors due to linearization, as discussed in Section 3.3.1, are
observed to depend significantly on the amount of uncertainty. For the 10% standard deviation
considered, the worst-case approximation errors across the 48 nodes of the network do not exceed
5.8% on average. Whereas for the deterministic approaches, these approximation errors are larger
by at least an order of magnitude.

12While the inflexible and inelastic consumers modeled in [Paper D] can indeed be charged with this additional payment
for linearization, its allocation among the consumers requires careful further analysis, specifically keeping fairness in mind.
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Figure 1: 48-node Gas Network
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Figure 2: 48-node Gas Network
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Figure 3.7: Comparison of the variance-agnostic (left) and variance-aware (right) chance-
constrained control policies in terms of variance of the state variables for Á = 0.1. The red
values show the probability of flow reversal in the pipelines. The inset plot shows the correlation
between pressures at nodes 34 and 35. Adapted from [Paper D].

Cost-variance trade-o↵

The trade-o↵ between expected cost and variance of state variables is studied by gradually
increasing the penalties on the standard deviations, such that zero values of penalties in (3.24a)
correspond to variance-agnostic chance-constrained gas system optimization. It was observed that
without any substantial impact on expected cost, variance-aware control policies are able to reduce
the variance of pressures and flows by 63.8% and 7.2%, respectively. These reductions in variance
are attained by optimal pressure regulation provided by the active pipelines, with valves becoming
more active as standard deviations of state variables are highly penalized while seeking further
variance reduction. Figure 3.6 analyzes the contributions of various flexible agents in reducing
the variance of nodal pressure in the natural gas system. The various line plots were obtained
by selectively suppressing recourse actions. For instance, the ‘injection only’ case was obtained
by enforcing active pipelines recourse actions “ = 0 while the case ‘injection + compressors’ was
obtained by enforcing valve recourse actions to be zero, i.e., [“]€(e,:) = 0, ’e œ Ev. It is observed
that as the pressure variance penalty increases, rapid reduction in variance is achieved at a lower
cost as the gas system operator deploys pressure regulation to mitigate uncertainty and variance.

The density plots in Figure 3.7 show a comparison of variance-agnostic and variance-aware
formulations of the proposed chance-constrained gas system optimization in terms of the variance
of nodal pressures. The values in red show the probability of flow reversal in the gas pipelines,
as compared to the nominal flow directions. It is observed that the variance-agnostic control
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policies lead to large pressure variance in the eastern part of the network, having a concentration of
stochastic gas extractions. Moreover, gas flows in certain pipelines are found highly susceptible to
a reversal in direction (up to 11%) during real-time operation. With a suitable selection of standard
deviation penalties, i.e., cfi

m = 0.1, ’m œ M, cÏ
e = 10, ’e œ E , variance-aware control policies

(showed in right) achieve a drastic reduction in pressure and flow variance across the gas network.
While the probability of flow reversals is significantly reduced, the pressure variance is localized
across nodes 34 and 35. Incidentally, these nodes exhibit worse approximation errors due to the
linearization compared to other nodes, and therefore, further minimization of pressure variance is
not feasible. Nevertheless, the large pressure variance at these nodes does not lead to flow reversal
in the edge (34,35) since these pressures are highly correlated, as shown in the inset plot.

Additionally, [Paper D] discusses the cost-variance trade-o↵ w.r.t. the topology of the gas network,
shown in Figure 3.7. In particular, breaking the cycles C1 and C2 by removing edges (13,14), (14,19),
and (29,30) renders a radial network topology. As a result, the weakening of graph connectivity
allows for more drastic pressure variance reduction at lower cost13.

Revenue analysis

Next, the revenues of the various gas market agents are compared in Figure 3.8 in the prevalent
deterministic gas markets and the proposed chance-constrained gas market in both variance-
agnostic and variance-aware implementations. Observe that the variance-agnostic markets lead
to a substantial increase in payments compared to the deterministic markets, with variance-
awareness coming with a further drastic increase. Apart from the expected additional components
for uncertainty and variance mitigation, the payments for nominal balance also increase in the
chance-constrained markets. This can be attributed to (i) increased marginal cost of gas injection
since the gas consumption by active pipelines to provide pressure regulation increases demand,
(ii) withholding of less expensive gas suppliers from supplying nominal gas injection such that
the security margins of the chance constraints are respected, and (iii) the previously-discussed
trade-o↵ between choosing control policies that lead to a dispatch with minimum expected cost vs.
those conducive for minimizing the variance of state variables.

13This observation agrees with the analytical expression defining the changes in pressure due to uncertainty propagation
in (3.21a), since the linearization parameters Ğ2 and Ĝ3 encode the graph connectivity.
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3.4 Future perspectives

While the discussion on uncertainty-aware coordination among the energy systems in this chapter
is limited to the integration of electricity and natural gas systems, similar issues with uncertainty
propagation also arise at the interface of electricity and district heating, or water networks. In
general, studying uncertainty propagation among energy systems poses significant analytical and
computational challenges due to the nonlinearities and non-convexities inherent to the asset and
network models. Nevertheless, the methodology developed in this thesis underscores crucial
elements involved in modeling, analysis, and eventual market-based mitigation of uncertainty
propagation among the energy systems while cross-carrier flexibility is harnessed. These elements
include the need for (i) deploying physically-realistic yet computationally-tractable models of
assets and networks in the energy systems, (ii) establishing a tight analytical dependency between
the state variables of the energy systems and the uncertainty faced, and lastly, (iii) performing
rigorous in-sample and out-of-sample simulations to validate and characterize the sub-optimality
and approximation errors associated with the modeling choices. Together, these elements enable a
reliable system operation in the integrated energy systems while harnessing cross-carrier flexibility
during operational time scales.

Lastly, the proposed uncertainty propagation model could be extended to quantify and study
systemic risk in integrated energy systems. Such a study would entail not only the consideration
of resilience against extreme events triggered by potential faults but also the robustness against
the propagation of shocks across the system boundaries. Future works could explore how the
coupling and connectivity among the energy systems as well as their network topology impact
systemic risk. New market products and flexibility services could be introduced to remunerate
agents contributing towards mitigating such risks.



CHAPTER4
Conclusions and Perspectives

This thesis provided scientific contributions to improve market-based coordination in integrated
energy systems to incentivize, steer, and harness cross-carrier flexibility for the electricity system.
The thesis contributed along two research directions. The first one rethought forward electricity
markets, transforming them from energy-centric to flexibility-centric markets. The classical spatial
price equilibrium problem was revisited in a conic optimization framework such that nonlinearities
in cost and constraints of flexible assets and the networks comprising the integrated energy
system were considered. The second direction focused on characterizing and mitigating the
uncertainty propagation across energy system boundaries while harnessing cross-carrier flexibility
in operational time scales. A general framework to study the propagation and market-based
mitigation of uncertainty in integrated energy systems was developed and analyzed.

In what follows, the key findings of this thesis are reflected upon in Section 4.1, while future
research directions are highlighted in Section 4.2.

4.1 Key findings

The research findings from this thesis are relevant for the integrated energy systems of the future
from several perspectives.

From a market design perspective, this thesis proposed and analyzed a generic and e�cient
electricity market-clearing framework with flexibility procurement at the center. The proposed
flexibility-centric market framework removes the market participation barriers for heterogeneous
market participants across the integrated energy system by providing non-discriminatory market
access to a variety of flexibility services. As a consequence, electricity markets are broadened to
possibly include actors assuming new roles by leveraging innovative business models, which
is beneficial from a regulatory standpoint. For instance, a novel variance minimization service
facilitated the uncertainty-aware market-based coordination developed in this thesis. Flexible gas
system agents such as gas suppliers and pressure regulation providers could subscribe to providing
such services for additional revenue streams. Within the electricity system, similar roles can be
envisioned for aggregators of flexible loads and electric vehicles, as well as other demand-side
sources of flexibility. Furthermore, the proposed market frameworks were analytically proven to
be e�cient from an economic perspective. The satisfaction of the desired economic properties is
crucial to market-based coordination in integrated energy systems so that cross-carrier flexibility is
unraveled in a long-term and sustainable manner.

From a system operations perspective, these market frameworks enabled the introduction of
new flexibility products and services, e.g., policy-based reserves, adjustment policies, variance
minimization services, to accommodate the uncertainty in energy systems. Numerical results
presented in this thesis highlighted that market-clearing algorithms based on chance-constrained
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optimization exhibit computational tractability and desirable economic properties while endoge-
nously characterizing the uncertainty faced by the energy systems. In addition to performance
guarantees, the constraint violation probabilities inherent to chance constraints are aligned with
the reliability metrics familiar to system operators, thereby making the chance-constrained market
frameworks well-suited for a real-world implementation. From a modeling standpoint, a physically
realistic representation of the steady-state dynamics of energy flows in the networks through the
inclusion of SOC constraints allows system operators to optimally procure flexibility services
from a variety of spatially-dispersed resources. Novel convexification strategies were developed
to include the nonlinear and non-convex dynamics of flows in energy systems operating under
uncertainty and its propagation across system boundaries. Numerical studies based on in-sample
and out-of-sample simulations were performed to validate the convexification strategies and to
benchmark the proposed market frameworks against available alternatives. When compared
to prevalent deterministic and stochastic energy markets, the proposed market-clearing frame-
works demonstrated improvement in social welfare arising from e↵ective utilization of available
cross-carrier flexibility.

For market participants in the integrated energy systems, the market frameworks developed in
this thesis enable them to reflect the SOC-representable nonlinearities in their market participation
strategies via the conic bids. Such nonlinearities could arise, for instance, from their cost functions
or state equations, which are typically approximated by linear functions to fit the prevalent
LP-based market-clearing problems. Moreover, the temporal coupling and multiple commodities
involved in the proposed market frameworks enabled participants to represent their costs and
constraints exactly, as opposed to the current practice of internalizing them through complex
orders that link multiple price-quantity bids. Next, the inclusion of multiple flexibility services,
e.g., uncertainty mitigation, variance minimization, and e�cient prices associated with them opens
avenues for flexibility-only market participants to recover their costs while providing these services
in the market. For boundary agents operating at the interface of energy systems, nonlinearities
aside, price competitiveness was improved as a result of the uncertainty-aware coordination
developed in this thesis. Lastly, under the perfectly competitive setting assumed, the benefits for
market participants are aligned with an improvement in the social welfare of energy markets.

4.2 Perspectives for future research

The insights gained in this thesis open up several future research paths. While suggestions for
future research are provided throughout the main chapters of this thesis, in the following, three of
the most promising research directions are highlighted.

First, the proposed generic, flexibility-centric market design for electricity markets and the
uncertainty-aware coordination framework can be employed for various market-clearing use
cases in future integrated energy systems. Leveraging the modeling examples and theoretical
results in the thesis, such use cases may further unlock operational flexibility from heterogeneous
market participants. An example within the electricity system is a market framework that entails
an uncertainty- and network-aware coordination between the transmission and distribution
system operators. This enables the flexibility available at the distribution level to be appropriately
harnessed and priced within the market framework while considering physically-accurate network
representation. Another example entails the development of new products and services, priced
using the dual variables arising from the uncertainty-aware coordination among the energy systems.
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While this thesis employed variance of state variables as a proxy for the uncertainty propagated
across system boundaries, other uncertainty characterizations, e.g., intra- or inter-period variability,
minimum or maximum bounds on variables, etc. could be used for new product definitions. Lastly,
a further research aspect relates to the definition and analysis of new financial contracts in the form
of options, physical or financial rights, etc., tailored for unconventional sources of cross-carrier
flexibility, such as linepack flexibility. These financial instruments permit the gas network operator
to e�ciently allocate the surplus revenue generated from flexibility services.

The second research direction addresses further generalization of the LP-based energy markets.
Within the realm of convex optimization, the SOCP framework featured prominently throughout
this thesis as the backbone for market-clearing problems. A generalization of this framework
can, for instance, be achieved by a semi-definite programming (SDP) based electricity market
framework which admits broader feasibility regions shaped by cones of semidefinite matrices.
In addition to SDP-based convexification approaches for the non-convex flows in the networks,
such an extension allows further robustification of the uncertainty-aware coordination among
energy systems [141]. As the theoretical results in this thesis rely on Lagrangian duality applied to
generalized conic inequalities, it provides a foundation for studying an SDP-based spatial price
equilibrium in the future. Generalization aside, moving towards SDP-based markets for electricity
could bring further refinements to the procurement of operational flexibility. Considering the
possible exactness of the SDP relaxation for the AC power flows in the electricity network [154],
extending the proposed multi-commodity market with SDP constraints opens new avenues for
market-based procurement of flexibility services related to the state variables in the electricity
system, e.g., reactive power control, voltage regulation, phase regulation, etc. This opens avenues
for further broadening of the electricity market access, providing novel revenue streams for new
flexibility providers owning a variety of physical assets. Such flexibility providers could potentially
trade energy and flexibility in a centralized (or decentralized, e.g., through peer-to-peer trades)
manner to ensure both local and global balancing of supply-demand in the electricity system.

The third research direction relates to the central coordination framework employed by this thesis
to study uncertainty propagation in the integrated energy system. While the centralized framework
provides a relevant benchmark for the amount of cross-carrier flexibility harnessed and uncertainty
propagation mitigated, it lacks appeal due to the existing and foreseen regulatory barriers to
real-world implementation. System-level steering of flexibility aside, a large portion of the cross-
carrier flexibility could potentially be harnessed through decentralized or local coordination among
specific groups of agents in the integrated energy system while retaining the separate market
structures. This local coordination improves the overall social welfare since it helps mitigate (to
varying extents) the economic externalities associated with the multiple separate and asynchronous
energy markets. Such local coordination could entail, for instance, sharing information in the form
of signals, e.g., price forecasts, demand forecasts, cost uncertainty, etc. among these groups of
agents. Further research is crucial in this direction to evaluate what types of signals are beneficial
to be shared among which groups of agents to improve the amount of cross-carrier flexibility
harnessed in the absence of a central coordinator. Studying such information sharing is not only
interesting from a system point of view but also relevant from the perspective of the market
participants. Since the flexibility providers are heterogeneous agents, often residing in di↵erent
energy systems and are to exposed information barriers across the energy system boundaries,
information sharing is appealing to them as it potentially improves their payo↵s while making
decisions under uncertainty.
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Abstract

We propose a new forward electricity market framework that admits heterogeneous market partici-
pants with second-order cone strategy sets, who accurately express the nonlinearities in their costs
and constraints through conic bids, and a network operator facing conic operational constraints.
In contrast to the prevalent linear-programming-based electricity markets, we highlight how the
inclusion of second-order cone constraints enables uncertainty-, asset- and network-awareness of the
market, which is key to the successful transition towards an electricity system based on weather-
dependent renewable energy sources. We analyze our general market-clearing proposal using conic
duality theory to derive e�cient spatially-di↵erentiated prices for the multiple commodities, com-
prising of energy and flexibility services. Under the assumption of perfect competition, we prove
the equivalence of the centrally-solved market-clearing optimization problem to a competitive spa-
tial price equilibrium involving a set of rational and self-interested participants and a price setter.
Finally, under common assumptions, we prove that moving towards conic markets does not in-
cur the loss of desirable economic properties of markets, namely market e�ciency, cost recovery
and revenue adequacy. Our numerical studies focus on the specific use case of uncertainty-aware
market design and demonstrate that the proposed conic market brings advantages over existing
alternatives within the linear programming market framework.

Keywords: OR in energy, spatial equilibrium, mechanism design, electricity markets, conic
economics

1. Introduction

The spatial price equilibrium problem, as first analyzed by Enke (1951) and Samuelson (1952),
computes commodity prices and trade flows that satisfy partial equilibrium conditions over a
network. In a two-sided auction framework, this problem involves price-quantity supply o↵ers and
demand bids matched by an auctioneer to maximize the social welfare, contingent on the spatial
constraints. Historically, spatial price equilibrium problems rely on linear programming (LP) theory
(Kantorovich, 1960) to derive the market equilibrium prices from marginal equalities. Despite the
success of LP in achieving optimal market-clearing outcomes and e�cient prices with satisfactory
computational e↵ort, it is potentially limiting in physical systems as it may fail to accurately
represent the nonlinear operational characteristics of assets and the network. Examples of such
physical systems include electricity (Bohn et al., 1984), natural gas (De Wolf and Smeers, 2000),
water (Cai et al., 2001), heat (Mitridati et al., 2020), telecommunication networks (Courcoubetis
and Weber, 2003) and supply chains (Snyder et al., 2014). Even in non-physical systems facing
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uncertainty, the use of LP compels a linear modeling of uncertainty and potential risk preferences,
which is limiting at times.

A natural question then arises, why should the market-clearing problem be confined to the
LP framework? This question is pertinent since LP is the simplest mathematical framework in
the convex optimization theory, while more general convex frameworks such as conic programming
are available. If such frameworks enable a more accurate representation of physical assets and
networks as well as uncertainty, while retaining the advantages of LP in terms of optimality,
pricing, and computational ease, it is then, indeed, appealing to adopt them. Leveraging the recent
mathematical and computational advances in conic programming (Alizadeh and Goldfarb, 2003;
Mosek ApS, 2021), in this work, we introduce and analyze spatial price equilibrium in a market-
clearing context based on the second-order cone programming (SOCP) framework, and demonstrate
how it outperforms the LP-based markets. Although our theoretical results are generalizable to
any market-clearing context, we choose the domain of electricity markets for exposition as it is rich
in examples that worsen the adverse impacts of the limitations imposed by LP-based markets.

1.1. Limitations of LP-based Electricity Markets

In electricity markets, the nonlinearities arise from the costs (utilities) and constraints of pro-
ducers (consumers) and the physics of power flow in the network. Currently, real-world electricity
markets follow the original proposal by Bohn et al. (1984) to solve the spatial price equilibrium
problem as an LP to obtain optimal production and consumption quantities and the spatially-
di↵erentiated nodal electricity prices, commonly referred to as locational marginal prices (LMPs)
in the industry (Kirschen and Strbac, 2018). To reach climate change mitigation goals, electricity
systems are transitioning towards a more sustainable future (Chu and Majumdar, 2012), by inte-
grating larger shares of weather-dependent renewable energy sources such as wind and solar1. This
trend challenges LP-based markets on three accounts.

First, with large shares of variable and unpredictable renewable energy, electricity markets are
exposed to significant uncertainty, which needs to be accounted for. Classical methods within the
LP framework, such as scenario-based stochastic programs (Pritchard et al., 2010; Zavala et al.,
2017) and robust optimization techniques (Bertsimas et al., 2013) are unsuitable in practical set-
tings as they su↵er from computational intractability and solution conservativism, respectively.
Going beyond LP-based markets is beneficial from an uncertainty modeling perspective. For in-
stance, chance-constrained programming (Kuang et al., 2018), which admits nonlinear yet con-
vex computationally tractable and analytically expressable uncertainty models, paves the way for
uncertainty-aware electricity markets in practice.

Second, accommodating the uncertainty requires resources that provide flexibility services by
adapting their operational status. Such flexible resources include, among others, energy storage
(Kim and Powell, 2011), flexible consumers (Anjos and Gómez, 2017), as well as the coordination
with natural gas (Thompson, 2013) and district heating (Mitridati et al., 2020) sectors. LP-
based markets impose limitations because operational characteristics of flexibility providers, which
are typically nonlinear, when approximated by linear constraints shrinks their actual feasibility
set, thereby undermining the amount of flexibility that can be harnessed. At times, ignoring the
characteristics induces operational and reliability risks for the flexibility provider and the electricity
system, as witnessed during the 2014 polar vortex event in Northeastern United States (PJM
Interconnection, 2014) and more recently, during the cold weather event in Texas (Bushnell, 2021).
The need for an asset-aware electricity market remains unfulfilled within the LP framework.

1In Denmark, for instance, 50% of annual national electricity consumption in 2020 was supplied by such renewable
energy sources, and by 2030, this share is envisioned to reach 100% (The Danish Government’s Climate Partnership,
2020). Similar, if not as ambitious, targets have been adopted by countries across the world to reduce electricity-
related CO2 emissions (IRENA, 2015).
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Third, accurate operational modeling of flexible resources is valuable only if the network con-

straints are represented in su�cient detail, which is crucial as flexible resources are dispersed across
the electricity network. Conventionally, a linear approximation of electricity network constraints
is adopted to retain an LP-based market-clearing problem. With this approximation, the market-
clearing problem may result in procurement of flexibility services from resources in a way that
the simplified network constraints do not allow the flexibility to be delivered when needed (Pa-
pavasiliou, 2018). This is critical in the case of electricity markets as the loss of real-time balance

between the production and consumption of electricity in the system may lead to minor, localized
supply disruptions at best and a large-scale cascading blackout at worst (Daqing et al., 2014). A
network-aware procurement of flexibility services is vital for maintaining the real-time balance.

On the above three accounts, the LP framework falls short in meeting the challenges of elec-
tricity markets of the future, necessitating a more advanced yet practical alternative.

1.2. Towards Conic Economics

Augmenting LP-based market-clearing problem with conic constraints alleviates the previously-
discussed limitations to a great extent. Specifically, in electricity markets, admitting conic con-
straints incorporates the nonlinearities arising from modeling uncertainty, operational constraints
of flexible resources, and physically-accurate representation of power flows. For instance, conic
constraints resulting from the convex reformulation of chance constraints not only enable a com-
putationally tractable model of the uncertainty from renewable energy but also an analytical char-
acterization of the risk faced by the electricity markets while mitigating it (Mieth et al., 2020).
Towards an asset-aware market, conic constraints model the nonlinearities associated with the
flow of natural gas in pipelines that are fuel conduits for gas-fired power producers, which are
currently the primary flexibility providers in electricity markets. Lastly, in the context of network-
awareness, the foreseen evolution of decentralized market structures closer to consumption (Parag
and Sovacool, 2016), and the flexibility available therein, is unlocked through the adoption of conic
constraints, which are necessary to accurately model the networks.

A market-clearing problem with conic constraints fosters the so-called conic economics. Coined
by Raissi (2016), conic economics was introduced in the context of general equilibrium theory,
focusing on mitigation of financial risk. In a broader sense, in this work, we argue that the in-
clusion of second-order cone (SOC) constraints based on the Lorentz cones into the spatial price
equilibrium problem alleviates the limitations of the prevalent LP-based framework. Enabling
convexity-preserving modeling of nonlinearities, the resulting SOCP-based market-clearing prob-
lems are e�ciently solved in polynomial time using interior-point methods (Alizadeh and Goldfarb,
2003) by several o↵-the-shelf commercial solvers such as MOSEK, Gurobi, and CPLEX. Our proposed
conic market is uncertainty-, asset- and network-aware, which is crucial for many physical and
non-physical systems, apart from the electricity system. Indeed, advances towards including SOC
constraints in electricity market-clearing problems have been recently made, in particular by Kuang
et al. (2018), Papavasiliou (2018), Dvorkin (2020) and Mieth et al. (2020). However, these works
address one of three challenges discussed, i.e., related to uncertainty-awareness, asset-awareness or
network-awareness; thereby, lacking a general appeal, and are limited in their practical applicabil-
ity. Moreover, the non-generality of the bids implies that flexible resources, which are critical in
the future electricity markets, are excluded.

1.3. Contributions

As a broad contribution, our work generalizes the prevalent LP-based market-clearing problem
to the SOCP framework and applies conic duality to analyze the market equilibrium prices and the
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economic properties of the underlying market-clearing problem2. In the following, we discuss the
specific contributions of this work from three perspectives, i.e., from a market design perspective,
theoretical perspective, and finally from a practitioner’s perspective.

From a market design perspective, our primary contribution is an original proposal for a general

conic electricity market. By general, we imply a market framework that is uncertainty-, asset- and
network-aware. Our proposed market framework is uncertainty-aware by design, as it admits a
chance-constrained market-clearing formulation. Towards an asset-aware electricity market, we
enable heterogeneous market participants to accurately express SOC-representable nonlinearities
in their cost (or utility) functions and constraints. Nonlinear network flow models underlying the
physical delivery associated with the trades are also included in our proposal, leading to network-
aware electricity markets. With the needs of future electricity markets in view, flexibility providers
take a central role in our market design.

From a theoretical perspective, we first formulate the market-clearing problem as a centrally-
solved optimization problem and address the challenge of robust solvability of SOCP problems.
Theorem 1 provides the necessary and su�cient conditions for optimality and robustness of the
market-clearing outcomes, while Theorem 2 gives an analytical expression for conic spatial prices
of the traded commodities. Connecting the centrally-solved optimization problem to a spatial equi-
librium problem involving rational and self-interested actors, Theorem 3 leverages conic duality to
prove the equivalence of the optimization to a competitive equilibrium. Under common assump-
tions, Theorem 4 proves the satisfaction of economic properties, namely e�ciency, cost recovery
and revenue adequacy (Schweppe et al., 1988), in the proposed market-clearing. This analytically
supports that the move towards conic markets does not incur the loss of any economic properties
compared to the prevalent LP-based markets.

From a practitioner’s perspective, we illustrate the generality of our proposed market-clearing
framework by defining a bid format for conic markets, enabling heterogeneous market participants
to express their preferences. Our numerical studies highlight how the conic market encompasses an
uncertainty-aware electricity market that e�ciently remunerates the mitigation of uncertainty by
the market participants, such that the real-time balance in the electricity system is ensured. We
compare the proposed SOCP-based market-clearing proposal with two LP-based uncertainty-aware
benchmarks, highlighting the advantages of moving towards a conic market framework.

Paper organization: In §2 we introduce the market setting, illustrate the relevance of SOC con-
straints via examples, introduce the bidding format, and present the general conic market-clearing
as an optimization problem. In §3, we analyze the spatial equilibrium underlying the optimiza-
tion problem and discuss the economic properties constituting the market equilibrium. Next, §4
presents numerical results on one of the market-clearing use cases by comparing an uncertainty-
aware conic market with the available alternatives within the LP domain. Finally, §5 concludes by
highlighting the key findings of this work and discusses future perspectives. Appendix A provides
a concise background on SOCP duality, while we prove our theoretical results in Appendix B.
We provide modeling examples and present the market-clearing problems employed in numerical
studies in the Supplementary Material which serves as an electronic companion to the paper.

Notation: The set of natural and real numbers is denoted by N and R, respectively, whereas R+

and R�, respectively, denote the sets of non-negative and non-positive real numbers. Upper case
alphabets with a script typeface, such as A, represent sets, while vectors are denoted by lower case

2Beyond the SOCP framework, semidefinite programming (SDP) which operates on the cone of semi-definite
matrices instead of the Lorentz cone, allows for further broadening of the scope of the market-clearing, albeit at the
cost of a higher computational burden. Our theoretical results and their proofs build on Lagrangian duality involving
generalized inequalities, which lay the foundation for an SDP-based market framework in future.
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Day-ahead Market-Clearing

Commodity 1: energy
Commodity 2: adjustment policy (flexibility)

Real-time Operation

• energy physically delivered
• hourly-activated policies

Day: (D � 1) Day: D

1 t

Hours
24

Figure 1: Illustration of commodities traded in an uncertainty-aware electricity market

boldface and matrices by upper case boldface alphabets. For a vector x, the operator x
> denotes

its transpose, kxk
2

represents its Euclidean norm and diag(x) returns a diagonal matrix with vector
x as the leading diagonal. We retrieve the k-th element of the vector x as the scalar xk and use
the operator [·]k to retrieve the k-th element of a general vector expression. 0 and 1 are vectors of
zeros and ones; arithmetic operators , =, and � on vectors are understood element-wise. For a
matrix M 2 Rp⇥q, [M](:,k) 2 Rp retrieves its k-th column while [M](k,:) 2 R1⇥q retrieves its k-th
row. The operator tr(M) returns the trace of the matrix M, while the expression M < 0 indicates
its positive-semidefiniteness. Lastly, the operator ⌦ denotes the Kronecker product.

2. A General Conic Market for Electricity

We discuss the setting of our conic market-clearing problem in §2.1, followed by introducing
SOC constraints in a market-clearing context in §2.2. In §2.3, we discuss the equality constraints
and present the conic market bids in §2.4. Lastly, we formulate the general market-clearing problem
in §2.5 as an SOCP problem.

2.1. Market Setting

We consider a forward electricity market involving multiple discrete clearing periods within the
finite time horizon of a single day. We focus on hourly electricity markets prevalent across the
world and collect the hours of the day in a set T = {1, 2, . . . , T}, where T = 24.

Commodities: Without loss of generality, we assume that participants in the forward market com-
pete at the day-ahead stage. The hourly clearing periods at the day-ahead stage, therefore, cor-
respond to the hours of the next day, which we collectively refer to as the real-time operation.
The two types of commodities to be traded are (i) energy and (ii) flexibility services. Both types
of commodities are traded hourly in the day-ahead market, which is a purely financial market in
the sense that the physical delivery of these commodities occurs during the real-time operation.
The former commodity, i.e., energy, represents the quantity in MWh to be exchanged among the
market participants during the real-time operation. The latter, i.e., flexibility services, refers to
the exchanges that contribute to the supply-demand balance during the real-time operation. For
instance, these exchanges could be a result of adjustment policies of flexible market participants
in response to an operational need that may arise during the real-time operation. A potential
occurrence of an imbalance between the total production and consumption of energy in the system
during the real-time operation is such an operational need. Figure 1 illustrates a two-commodity
market, highlighting the day-ahead clearing and the activities during the real-time operation, which
we employ in our numerical studies in §4. As another example, flexibility services could also be
traded for mitigation of a foreseeable congestion in parts of the electricity network. We define a
set P = {1, 2, . . . , P} to denote the P commodities traded in the market.

Market participants: Our market framework admits heterogeneous competing participants buying
or selling one or more commodities in the market. We introduce the notation and discuss properties
applicable to all participants here, while delegating the elaboration on various kinds of participants
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to §2.2. Let the set I = {1, 2, . . . , I} collect I participants, such that I � 2. For each participant
i 2 I, let qit 2 RKi denote the Ki � P number of decision variables at hour t. We retrieve
the k-th element of the decision variable at hour t as qitk 2 R, 8k 2 {1, 2, . . . , Ki}. To facilitate
a multi-period market-clearing, we stack qit for the T = 24 hours, extending each participant’s
decision vector to qi 2 RKiT . The first P elements of the vector qit represent contribution towards
the P commodities in hour t. For notational compactness, we introduce qip 2 RT , 8p 2 P
as a subvector of qi extracting the hourly contributions by participant i towards the trades of
the p-th commodity over the T hours. Apart from the contributions towards the commodity
trades, each participant may have Ki � P state variables at each hour t, which are involved in
the participant’s operational constraints. Let cit(qit) : RKi 7! R denote the participant’s cost
function, such that each cit(qit) is increasing, convex and twice-di↵erentiable in qit and satisfies
cit(0) = 0. We adopt a sign convention that cit(qit) > 0 applies for injection into the network and
cit(qit) < 0 for withdrawal, thereby representing the convex cost of injection and concave benefit
of withdrawal. The temporally-separable structure of the cost function ensures its convexity while
accommodating participants such as firms owning energy storage units, who toggle between being
producers (discharging) and consumers (charging).

Electricity network: We represent the electricity network as a directed graph (N , L) formed by a
set of nodes N = {1, 2, . . . , N}, each potentially hosting multiple market participants, and a set of
lines L comprised of pairs of nodes (n, n0) that are connected. We define In ✓ I, 8n 2 N as the set
of market participants connected to node n. The quantity of power flowing over each line and the
direction of the flow is governed by Kirchho↵’s laws during the real-time operation. Moreover, the
flow across the network is limited by a maximum flow quantity in each line, known as the thermal
limit or rated capacity of a power line.

System operator: A system operator ensures that (i) optimal market-clearing outcomes and e�-
cient prices are achieved, and (ii) a continuous balance between consumption and generation is
maintained during the real-time operation, while satisfying the transport limits of the underlying
electricity network. Evidently, these roles correspond to the tasks of operating the market and op-
erating the network, respectively. In this paper, we assume that the system operator is responsible
for both the day-ahead market-clearing and the real-time operation, which is consistent with the
prevalent organization in the United States.

Competition and timeline: For the simplicity of exposition, this work assumes that no market
participant acts strategically to exercise market power. Moreover, we overcome the non-convexity
arising from integrality constraints by accepting o↵ers (bids) from participants already committed
to producing (consuming). In our market setting, the committed market participants submit their
day-ahead supply o↵ers and demand bids to the central system operator, before a predefined gate
closure time, without any knowledge of the bids and o↵ers from other participants. Thereafter,
the market is cleared by the system operator matching the o↵ers with the bids, while ensuring the
feasibility of network constraints. Finally, cleared prices and quantities for all the commodities are
publicly disclosed.

Payment mechanism: As in majority of electricity markets worldwide, we adopt a uniform pricing

scheme for pricing of energy, implying that all accepted supply o↵ers and demand bids are cleared
with a common price at a given location and time. Alternative payment mechanisms, e.g., pay-
as-bid and Vickrey-Clarke-Groves pricing in a single commodity setting (Vickrey, 1961) are other
possibilities and our market-clearing problem is generalizable to admit them.

6



2.2. SOC Constraints in a Market-Clearing Problem

Our general market framework admits heterogeneous market participants of four kinds. First,
we consider conventional power producers such as firms that own coal-fired, gas-fired, nuclear, and
hydro power plants. These producers are dispatchable at the day-ahead stage, i.e., they are able to
plan their production during real-time operation with a high degree of certainty. Some are flexible,
e.g., gas-fired and hydro, meaning that their planned production quantities can be modified during
the real-time operation, if needed. On the contrary, some producers are relatively less flexible,
e.g., coal-fired and nuclear power producers. Second, we consider firms owning weather-dependent
renewable power production sources such as wind and solar power plants. These producers are non-

dispatchable and inflexible. Third, we consider energy consumers such as small-scale end-consumers
or large industries. Some of these consumers may be flexible and can be counted as flexible
resources. Last, we consider additional types of flexibility providers, which may not necessarily
be conventional power producers or flexible consumers, for instance, firms owning energy storage
units.

SOC constraints applicable to these market participants are derived from a second-order cone,
which is a convex set and is alternatively referred to as Lorentz cone or ice-cream cone. For the
variable qi of participant i, 8i 2 I, a SOC constraint in its general form is given by

kAiqi + bik2
 d

>
i qi + ei ,


Ai

d
>
i

�
qi +


bi

ei

�
2 Ci ✓ Rmi+1 , (1)

where Ci is a second-order cone of dimension mi + 1, where mi 2 N. The dimensions mi + 1 of the
cone reflect the relationship within the decision variables. Considering the heterogeneous mix of
market participants involved, the dimensions of the cone in the SOC constraints are not necessarily
identical among the various participants or even among the constraints of each participant. Pa-
rameters Ai 2 Rmi⇥KiT , bi 2 Rmi , di 2 RKiT and ei 2 R embody the structural and geometrical
information for each constraint. We use the two equivalent forms in (1) interchangeably, preferring
the form with Euclidean norm while discussing the modeling of participant constraints and the
conic form in the analytical proofs.

Linear constraints: Any single-period or multi-period linear constraint arising from the operation of
physical assets owned by a participant i is represented by (1) with appropriate choice of parameters.
Linear constraints are represented by the SOC constraint (1), provided that Ai is a null matrix or
the cone is dimensioned such that mi = 0. In the former case, (1) reduces to the linear constraint
0  d

>
i qi + ei, which denotes a halfspace. Whereas in the latter case, (1) reformulates into a

linear constraint 0  d
>
i qi + e

0
i, where e

0
i = ei � kbik2

. For power producers, such constraints are,
e.g., minimum or maximum production limits and ramping rate constraints that limit production
change over subsequent hours.

Quadratic constraints: While linear constraints are admissible in LP-based electricity markets,
convex quadratic constraints are not. However, any convex quadratic operational constraint related
to the assets of participant i can be represented by (1) if di = 0 and ei � 0. Example EC.1 in the
Supplementary Material illustrates the conic reformulation of such a quadratic constraint.

Other nonlinear constraints: In a more general sense, beyond linear and convex quadratic con-
straints, (1) captures the relationship among the KiT number of decision variables for each market
participant, contributing towards asset-awareness of the market-clearing problem. For instance,
such nonlinear constraints arise in the coordination between the electricity system and natural
gas system, wherein the operational constraints of the natural gas system become relevant to the
day-ahead electricity market-clearing problem. Example EC.2 in Supplementary Material provides
further modeling details for these constraints.

7



Lastly, beyond asset-awareness, SOC constraints in their general form enable an uncertainty-
aware market-clearing problem. Specifically, chance constraints enable endogenous modeling of
uncertainty and risk faced by market participants and are analytically reformulated as SOC con-
straints under some mild conditions (Nemirovski and Shapiro, 2007), see Example 1 below.

Example 1 (Chance Constraints). Consider a market-clearing problem wherein, in addition to
the nominal production quantities, a flexibility service is contracted from the flexibility providers
in the market. A traded flexibility service is organized as an adjustment policy. As mentioned
in §2.1, these adjustment policies allow mitigation of the uncertainty realized during the real-
time operation, while look-ahead decisions are made by the system operator at the day-ahead
market-clearing stage. Such uncertainty could, for example, arise from imperfect forecasts for the
production from weather-dependent renewable energy sources or from imperfect load forecasts for
consumers. Assuming a single-period market-clearing problem for notational simplicity, let the
set W = {1, 2, . . . , W} collect the W independent sources of uncertainty in the electricity system
and vector ⇠ 2 RW denote the random forecast errors representing this uncertainty. Assume
that ⇠ follows a probability distribution P⇠, parameterized by the moments, mean µ 2 RW and
covariance ⌃ 2 RW⇥W , which are estimated by the system operator with access to a finite number
of historical measurements. Under the chance-constrained optimization framework, the system
operator allocates adjustment policies to flexible producers while allowing them to violate their
operational constraints with a small probability "̂ 2 [0, 1]. Assume again that participant i has

Ki = 2 decision variables such that qi1 =
⇥
q̂i1 ↵i1

⇤> 2 R2, where q̂i1 and ↵i1 are, respectively, the
nominal production quantity and the adjustment policy. A chance constraint limiting the total
production, i.e., the sum of nominal and adjustment, of the participant to its upper limit Qi is
written as

P⇠

✓⇥
1 1>⇠

⇤ 
q̂i1

↵i1

�
 Qi

◆
� (1 � "̂), (2a)

where the uncertainty is characterized by the total forecast error 1>⇠ 2 R. This probabilistic
constraint reformulates to its analytic equivalent, based on Nemirovski and Shapiro (2007), as

r"̂kX1 ↵i1k2
 Qi � q̂i1 � 1>µ ↵i1, (2b)

where all vectors of ones are 1 2 RW , and X 2 RW⇥W denotes a factorization of the covariance
matrix such that ⌃ = XX

>. For instance, since ⌃ < 0 from the definition of covariance ma-
trices, such a factorization can be obtained in a computationally e�cient manner using Cholesky
decomposition, resulting in X having a lower-triangular structure. This decomposition is uniquely
determined for covariance matrices that are full rank, i.e., all uncertainty sources are linearly inde-
pendent, as assumed. The parameter r"̂ 2 R+ is a safety parameter chosen by the system operator
relying on the knowledge of the distribution P⇠, such that r"̂ increases as "̂ reduces3. Constraint
(2b) is represented by the general SOC constraint (1) with parameters

A =
⇥
0 X1

⇤
, b = 0 , d = �1/r"̂

⇥
1 1>µ

⇤>
and e = Qi/r"̂ ,

3When the random forecast errors ⇠ are assumed to be normally distributed, the safety parameter r"̂ is given
by the inverse cumulative distribution function of the standard Gaussian distribution evaluated at (1 � "̂)-quantile
(Nemirovski and Shapiro, 2007). Dropping the assumption of normality, a more conservative choice of r"̂ is obtained
based on the so-called moment-based distributionally-robust chance constraints (Wagner, 2008), which considers the
distribution P⇠ to lie inside an ambiguity set of all probability distributions characterized by the empirically-estimated

moments µ and ⌃. In that case, the safety parameter r"̂ =
q

1�"̂
"̂ . A further generalization that considers even the

moments of distribution P⇠ to lie in well-defined uncertainty sets such as ellipsoids (Delage and Ye, 2010), lead to a
semidefinite constraint instead of the SOC constraint in (2b), leading to a SDP-based market-clearing problem.
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thereby resulting in a SOC constraint of dimension W +1. Further modeling details showcasing the
analytical reformulation of more complicated constraints, such as inter-temporal chance constraints
of market participants, are covered in the Supplementary Material.

Finally, accounting for the potentially multiple SOC constraints faced by participant i, we
introduce a set Ji = {1, 2, . . . , Ji} collecting the Ji constraints that extend (1) as

kAijqi + bijk2
 d

>
ijqi + eij , 8j 2 Ji, (3)

where each constraint with parameters Aij 2 Rmij⇥KiT , bij 2 Rmij , dij 2 RKiT and eij 2 R

corresponds to a second-order cone C ✓ Rmij+1. The feasibility region for (3) is formed by the
Cartesian product of Ji second-order cones Ci =

Q
j2Ji

Cij = Ci1 ⇥ · · · ⇥ CiJi , which is convex.

2.3. Equality Constraints

Each participant may be involved in trades corresponding to the P commodities, subject to
equality constraints that arise while considering temporal and spatial dynamics underlying their
asset models. We model the equality constraints on the decision variable qi of participant i as
Fiqi = hi, where Fi 2 RRi⇥KiT and hi 2 RRi are parameters encoding the Ri equality constraints
on qi, such that Ri  KiT and Fi has full row rank.

The market-clearing conditions are also modeled as marginal equalities coupling the decisions of
the participants such that supply-demand balance is ensured for each of the P commodities traded
in the market. Modeling these conditions, given the heterogeneous mix of market participants in
our framework, requires the following definition.

Definition 1 (Physical Fulfillment of Commodity Trades). For participant i 2 I, the hourly
injection or withdrawal towards commodity p is given by Gip qip 2 RT , where Gip 2 RT⇥T is a
coupling matrix formed by elements encoding the injection or withdrawal coe�cients.

We now elaborate on this definition. The contribution by a dispatchable producer (either
flexible or inflexible) towards the commodity representing energy is qip 2 RT

+, whereas for inflexible
consumers, the contribution is qip 2 RT

�. For both kinds of market participants, the coupling
matrices Gip are identity matrices, i.e., Gip = diag(1). Meanwhile, the contribution from energy
storage units qip to the commodity corresponding to energy adopts di↵erent signs in the various
hours depending on whether the storage unit is discharging (injection) or charging (withdrawal).
Information on the conversion factors for participants from other sectors such as natural gas or
district heating is also encoded within the entries of the matrix Gip. Finally, in addition to those
traded system-wide, the market-clearing problem may entail commodities traded among a subset
of all participants and thereby, reflect the agreements among that subset. Gip may thus be null
matrices for some commodities and for some participants.

2.4. Bid Format in the Conic Electricity Market

For the sake of generality, we adopt a common bid format for the supply o↵ers and demand
bids, referring to them as supply and demand bids, respectively and define them in the following.

Definition 2 (Conic Market Bids). Let Bi denote a bid submitted by the market participant i to
the system operator. The bid Bi is a tuple defined as

Bi :=
⇣
ni, {Aij ,bij ,dij , eij}j2Ji , Fi,hi, {Gip}p2P , {cQ

it , c
L

it}t2T

⌘
,

where ni 2 N is the electricity network node at which the participant i is located. Parameters
Aij ,bij ,dij , eij , 8j 2 Ji are linked to the Ji SOC constraints; Gip, 8p 2 P correspond to the
coupling matrices for the P commodities; Fi and hi correspond to the Ri equality constraints; and
lastly, c

Q

it , c
L

it, 8t 2 T denote the temporally-separated quadratic and linear bid prices.
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Remark 1 (Conic Market Bids vs. Price-Quantity Bids). The bids Bi are a generalization of
the so-called price-quantity bids that form the backbone of various orders placed in currently-
operational LP-based electricity markets, see Nord Pool (2021) for example. As the name indicates,
in addition to the participant’s locational information, a price-quantity bid comprises a bid price
representing the bidder’s willingness-to-pay or willingness-to-receive for the associated quantity.
In the proposed conic market bids, the quantities are formed by the parameters of the j-th SOC
constraint {Aij ,bij ,dij , eij} admitting the simple linear characterization of quantities qi when
Aij is a null matrix or when mij = 0, while more intricate representations of the operational
constraints are covered by a suitable choice of the SOC constraint parameters, as discussed in
§2.2. In an attempt to accommodate the operational constraints of market participants, prevalent
LP-based markets allow specialized order types, such as block orders (Nord Pool, 2021). These
block orders are derived by logically-linking several price-quantity bids over multiple periods and
to some extent, enable market participants to reflect their operational constraints on their market
participation strategies. Besides the inability to model physically-realistic, nonlinear operational
constraints of the participants, such complex orders mandate the use of integrality constraints
which leads to the loss of guarantees on the satisfaction of the desired economic properties of the
market.

2.5. Market-Clearing as an SOCP Problem

Network constraints: An accurate modeling of the physics of power flows in the electricity net-
work introduces nonlinearities and non-convexities. Convexification of these power flow equations
have utilized SOCP (Kocuk et al., 2016) and SDP (Lavaei and Low, 2012) relaxations to ensure
optimality while solving electricity system–related optimization problems. However, electricity
market-clearing problems across the world adopt a linearized approximation of the power flow
equations, relying on a number of assumptions (Cain et al., 2012). Consistent with current prac-
tice and for simplicity of exposition, our formulation adopts a variation of linearized power flow
equations that leverages the so-called Power Transfer Distribution Factor (PTDF) matrix. Nev-
ertheless, Example EC.3 in Supplementary Material demonstrates the network-awareness of our
market-clearing problem by showing how it can be extended to include the SOCP relaxation of
power flow equations.

Definition 3 (Power flows using PTDF). With the set In ✓ I collecting market participants
located at node n, the power flow sa

` along a line ` = (n, n0) at hour t is given by

sa

` =
X

n2N
[ ](`,n)

0

@
X

i2In

X

p2P
[Gipqip]t

1

A ,

where  2 RL⇥N denotes the PTDF matrix of the electricity network. Derived from the physical
parameters of power lines comprising the network, entries of the PTDF matrix are the sensi-
tivity of changes in the flow in any line to a unit injection at a given node. The expressionP

i2In

P
p2P [Gipqip]t 2 R computes the algebraic sum of injections or withdrawals of all partici-

pants located at node n towards the P commodities at hour t.

Remark 2. All P commodities share the common physical network for fulfillment of the trades,
as reflected by the summation in the expression for power flows in Definition 3.

Conic market-clearing problem, Mc
: Without loss of generality, we assume that the participants

have quadratic cost functions which satisfy the conditions in §2.1. In the interest of computational
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and analytical simplicity, we reformulate the quadratic costs as SOC constraints following the ap-
proach in Example EC.1. The market-clearing problem, hereafter referred to as Mc, is formulated
as

min
qi,zi

X

i2I

X

t2T

⇣
zit + c

L

it
>
qit

⌘
(4a)

s.t.
���CQ

itqit

���
2

2

 zit, 8t, 8i :(µQ

it , Q

it , ⌫Q

it ) (4b)

kAijqi + bijk2
 d

>
ijqi + eij , 8j 2 Ji, 8i : (µij , ⌫ij) (4c)

Fiqi = hi, 8i : (�i) (4d)
X

i2I
Gipqip = 0T , 8p, : (�p) (4e)

������

X

n2N
[ ](:,n)

0

@
X

i2In

X

p2P
[Gipqip]t

1

A

������
 s, 8t, : (%

t
, %t) (4f)

where the objective (4a) minimizes social disutility (or maximizes social welfare) of the market-
clearing problem over the time horizon, t 2 T . The optimization variables are the decision variables
of the market participants qi 2 RKiT , 8i and zi 2 RT , 8i. Recall that qit 2 RKi and qip 2 RT

are subsets of the i-th participant’s decision vector qi. The Lagrange multipliers associated with
the constraints are shown in parentheses next to them. The constraint parameters, in their order
of appearance, are Aij 2 Rmij⇥KiT , bij 2 Rmij , dij 2 RKiT , eij 2 R, Fi 2 RRi⇥KiT , hi 2 RRi ,
Gip 2 RT⇥T , [ ](:,n) 2 RL and s 2 RL. The index j 2 Ji refers to the Ji SOC constraints of
participant i as discussed in §2.2, while the index p 2 P refers to the P commodities traded among
the participants. Constraints (4b)-(4d) are participant-specific, while (4e)-(4f) are related to the
commodities exchanged in the market.

The temporally-separable quadratic and linear bid prices of participant i are given by c
Q

it , c
L

it 2
RKi and C

Q

it 2 RKi⇥Ki is a factorization of the quadratic cost matrix such that diag(cQ

it) = C
Q

it

>
C

Q

it .

Lagrange multipliers µQ

it 2 RKi , Q

it 2 R+ and ⌫Q

it 2 R+, 8t, 8i, are participant-specific dual
variables associated with the rotated SOC constraints. Constraints (4c) model the SOC constraints
applicable to the market participants that enable asset- and uncertainty-awareness of the market-
clearing problem. The tuple of dual variables associated with the SOC constraints (4c) are (µij , ⌫ij),
where µij 2 Rmij and ⌫ij 2 R+. Likewise, the dual variable �i 2 RRi associates with the Ri equality
constraints for the participant i, see §2.3.

Constraints (4e) are the system-wide balance constraints that couple the decisions of the market
participants for each of the P commodities traded in the market, such that the Lagrange multipliers
associated with these constraints �p 2 RT are interpretable as commodity prices. For instance, the
Lagrange multiplier associated with the balance between electricity production and consumption
is the nodal price of electricity. Lastly, constraints (4f) limit the magnitude of power flow in the
lines to their rated capacity, s, as given by Definition 3. Given the element-wise absolute value
operator in this constraint, we associate a pair of non-negative dual variables %

t
, %t 2 RL

+ with it.
Naturally, constraints (4f) can be altered to include asymmetric limits, i.e., the limits which depend
on the direction of flow in the power lines, without significant change to the analytical results that
follow. Further, note that instead of the chosen PTDF-based formulation, implementing an SOCP
relaxation for the formulation of power flow equations a↵ects the constraint (4f). However, the
overall market-clearing problem Mc remains within the SOCP framework.

Remark 3 (Strict Convexity). Observe that the optimization problem Mc has a strictly convex
objective function (4a) provided every market participant incurs a non-zero quadratic cost at all
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hours for each of its Ki variables. To see that, we recall that every positive semidefinite matrix is
the Gram matrix for some set of vectors. For the quadratic cost matrix diag(cQ

it) < 0,

q
>
itdiag(cQ

it)qit = q
>
itC

Q

it

>
C

Q

itqit =
���CQ

itqit

���
2

2

, 8t, 8i,

such that strict convexity is guaranteed only if the quadratic cost matrix is positive definite, i.e.,
diag(cQ

it) � 0, which requires cQ

itk 6= 0, 8k = 1, 2, . . . , Ki, 8t, 8i.

3. Economic Interpretation and Equilibrium Analysis

We discuss the price formation process for the P commodities traded in the market in §3.1,
followed by the theoretical results that characterize the spatial price equilibrium underlying the
centrally-solved market-clearing problem Mc in §3.2.

3.1. Conic Spatial Prices for Commodities

Deriving optimal market-clearing prices for the problem Mc is not straightforward, since strong
duality is not trivial to establish for an SOCP problem (Ben-Tal and Nemirovski, 2001). Unlike
their LP counterparts where strong duality is guaranteed merely by the feasibility of the primal
and dual problems as formulated in Farkas’ lemma, strong duality in SOCP problems derives from
the existence of strictly feasible

4 solutions to both the primal and dual problems (Alizadeh and
Goldfarb, 2003, Theorem 13). Following Slater’s constraint qualification for convex optimization
problems, strict feasibility refers to the existence of points within the feasibility set of the primal
problem where all inequalities - SOC and linear - are strictly satisfied. Additionally, a refinement
to Slater’s constraint qualification yields the so-called essentially strict feasibility of an SOCP
problem.

Definition 4 (Essentially Strict Feasibility). The market-clearing problem Mc is essentially strictly
feasible, if there exists a feasible solution tuple denoted by (qi , zi), 8i such that

���CQ

itqit

���
2

2

< zit, 8t, 8i,

kAijqi + bijk2
< d

>
ijqi + eij , 8j 2 Ji, 8i.

Observe that essentially strict feasibility is a weaker requirement as compared to strict feasi-
bility. Nevertheless, it is necessary and su�cient for strong duality to hold for Mc since other
inequalities (4f) are linear in decision variables (Boyd and Vandenberghe, 2004, §5.2.3). We now
provide the analytical results crucial to deriving optimal prices from the market-clearing problem
Mc.

Theorem 1 (Strong Duality). Let Dc
denote the dual problem to the market-clearing problem Mc

.

If the set of feasible solutions to the primal problem Mc
is non-empty, then both the primal problem

Mc
and dual problem Dc

are essentially strictly feasible, and consequently, strong duality holds for

the primal-dual pair of problems Mc
and Dc

.

Conditioned on feasibility of the primal market-clearing problem Mc, Theorem 1 enables eco-
nomic interpretations of the market-clearing outcomes. Relying on classical Lagrangian duality
theory, we provide an analytical expression for the optimal, spatially-di↵erentiated nodal prices of
the P commodities in the following theorem.

4Conventionally, in a market-clearing context, ensuring the strict feasibility or even merely the feasibility of
market-clearing problem is considered at a market design stage and is not of high relevance for the market operator.
Nevertheless, in the interest of generality and wider acceptance of our conic market-clearing proposal, we address
this crucial issue in our analytical results.
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Theorem 2 (Conic Spatial Prices). The solution to the conic market-clearing problem Mc
results

in optimal contributions q
?
ip, 8i 2 I for the p 2 P commodities and the market clears with optimal

prices ⇧
?
p 2 RN⇥T

for the p-th commodity given by

⇧
?
p = ⇤?

p � >(⇢? � ⇢?), 8p 2 P, (5)

where ⇢? , ⇢? 2 RL⇥T
and ⇤

?
p 2 RN⇥T

are variables with stacked columns of optimal dual variables

%?
t
, %?

t , 8t and �?
p, 8n, respectively, over the T market-clearing hours, i.e.,

⇢? = [%?
1 · · · %?

T ], ⇢? = [%?
1

· · · %?
T
], and ⇤

?
p := 1>

N ⌦ �?
p.

The commodity prices given by Theorem 2 are analogous in structure to the LMPs resulting
from the prevalent LP-based electricity market-clearing frameworks. Specifically, the optimal prices
⇧

?
p comprise of a nodal price component for each commodity ⇤?

p and a network price component
which is non-zero only if congestion arises in the network as a consequence of the power flows along
the lines to fulfill the trades.

3.2. Mc
as a Spatial Equilibrium Problem

First, we show the equivalence of the optimization problem Mc to a spatial equilibrium prob-
lem. Referring to the two roles played by the system operator discussed in §1, consider a virtual
separation of the system operator into a market operator and a network operator. First, the market
operator, acting as a price setter, collects the conic market bids from market participants and is re-
sponsible for clearing the day-ahead market and for the real-time operation of the system. Second,
the network operator, responsible for the physical fulfillment of the commodities, acts as a spatial

arbitrager to collect a non-zero revenue, congestion rent, whenever the trades lead to congestion
in the network.

Consider an equilibrium problem Ec comprised of a set of individual optimization problems of
the i 2 I market participants, the network operator and the market-clearing conditions. For market
participant i located at node ni 2 N , let Wip 2 RN⇥T denote the quantities of the commodity
p 2 P transacted (bought or sold) over the N nodes at the T hours. Under the perfect competition
assumption, the commodity prices⇧p, 8p are exogenous to the participants’ optimization problem.
Therefore, participant i maximizes her profit by deciding the optimal contributions qip, 8p 2 P
commodities traded in the market, subject to her operational constraints, by solving the problem

max
qi, zi,Wip

X

p2P
tr(⇧p

>
Wip) �

X

t2T

⇣
zit + c

L

it
>
qit

⌘

�
X

t2T
!t

>
⇣ X

p2P

�
[Wip](:,t) � Ini [Gipqip]t

�⌘
(6a)

s.t.
���CQ

itqit

���
2

2

 zit, 8t :(µQ

it , Q

it , ⌫Q

it ) (6b)

kAijqi + bijk2
 d

>
ijqi + eij , 8j 2 Ji :(µij , ⌫ij) (6c)

Fiqi = hi :(�i) (6d)

W
>
ip1 = Gip qip, 8p 2 P, :(�̂ip) (6e)

where the three terms comprising the objective function (6a) are the revenues generated by the
transactions, the cost (utility) of production (consumption) and the third term is the transport
cost for the physical fulfillment of the transactions at the nodes where they are delivered. Here,
the indicator vector Ini 2 RN contains the element corresponding to the location of participant i as
1, while all other elements are 0. Constraints (6e) ensure a balance of the commodity transactions
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with the contributions towards the trades as given by Definition 1. Variables �̂ip 2 RT are the
Lagrange multipliers associated with these constraints. Note that the nodal commodity prices ⇧p

and the price of transmitting power !t 2 RN , 8t are set by the market operator and, as such, are
considered as fixed by the participant.

Next, the network operator maximizes congestion rent, while fulfilling the trades of all the
commodities in the market. Let yt 2 RN , 8t denote the net power injection comprising of all
commodities and all market participants at the N nodes at each hour. The network operator
solves the following maximization problem subject to the network limits

max
yt

X

t2T
!t

>
yt s.t. � s   yt  s, : (%

t
, %t), (7)

where !t are variables exogenous to the network operator and the constraints limit the power flows
along the lines to their rated capacity in both directions.

Lastly, the market operator clears the market based on the following equalities

X

p2P
[Qinj

p ](:,t) = yt, 8t :(!t) (8a)

X

i2I
Gipqip = 0, 8p 2 P, :(�p) (8b)

where the auxiliary variable Q
inj
p 2 RN⇥T denotes the commodity-specific net nodal injections

Q
inj

p :=
hP

i2I1
(Gipqip)

> P
i2I2

(Gipqip)
> · · ·

P
i2IN

(Gipqip)
>
i>

. (9)

The market-clearing equalities (8a) ensure the net injection at each of the nodes of the network
is balanced by the transport service provided by the network operator. The shadow price of
this constraint, !t, appears as a parameter in the network operator’s maximization (7) and is
interpreted as the price of transmitting power from an arbitrary hub to the each of the nodes. As
discussed previously, (8b) ensure the system-wide balance of traded commodities.

Theorem 3 (Competitive Spatial Equilibrium). The convex market-clearing problem Mc
solved

centrally by the system operator is equivalent to a competitive spatial equilibrium Ec
comprised of

market participants, i 2 I each solving the profit maximization (6), the network operator solving

the congestion rent maximization (7) and the market operator clearing the market by enforcing the

equalities (8).

The proof for Theorem 3 relies on the equivalence of the Karush-Kuhn-Tucker (KKT) optimality
conditions of the two problems.

Corollary 1 (Existence and Uniqueness). The solution to the competitive spatial price equilibrium

problem Ec
exists and is unique in allocations q

?
i , provided all market participants bid with non-zero

quadratic price components, i.e., cQitk 6= 0, 8k = 1, 2, . . . , Ki, 8t, 8i 2 I.

We next analyze the desirable economic properties underlying the equilibrium Ec.

Theorem 4 (Economic Properties). The market-clearing problem Mc
and its equivalent compet-

itive spatial equilibrium Ec
result in optimal allocations q

?
i , 8i 2 I and spatial commodity prices

⇧
?
p, 8p 2 P such that the following economic properties are attained at optimality:

(i) Market e�ciency: Under the perfect competition assumption, social welfare is maximized,

such that no participant desires to unilaterally deviate from the market-clearing outcomes.
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(ii) Cost recovery: Let the market bids Bi for each market participant i 2 I be such that

eij � kbijk2
, 8j 2 Ji and hi = 0. Then, the optimal allocations q

?
i , 8i 2 I and optimal

spatial commodity prices ⇧
?
p, 8p 2 P ensure cost recovery for the market participants.

(iii) Revenue adequacy: The market operator does not incur financial deficit at the end of the

market-clearing horizon, i.e.,

X

p2P

X

i2I
tr(⇧?

p
>
W

?
ip) �

X

t2T
!?

t
>
y

?
t � 0.

Theorem 4 characterizes the economic properties underlying the market-clearing outcomes from
the conic market-clearing Mc. While market e�ciency is guaranteed under the perfect competition
assumption, cost recovery is ensured for all participants under two conditions, which we elaborate
in the following. First, as shown in the modeling examples in the Supplementary Material, the
condition eij � kbijk2

holds true for all participants in most practical settings, with the no-
table exception of market participants having a non-zero lower bound on their decision variables.
The practical issue of non-guarantee of cost recovery for such market participants also prevails in
currently-operational LP-based electricity markets. The second condition relates to the homogene-
ity of the linear equality constraints (4d), i.e., qi = 0, 8i is a feasible solution to the market-clearing
problem. Observe that, the feasibility of a zero-allocation solution, i.e., qi = 0, 8i also satisfies the
first condition, thereby indicating that these two conditions are equivalent. Lastly, the condition
for revenue adequacy for the market operator requires that the net payments received from the
market participants i 2 I less the payments made by the market operator to the network operator
towards transmission service is non-negative.

Remark 4 (Incentive Compatibility). The incentive for actors to deviate from price-taking,
perfectly-competitive behavior decreases to zero as the number of actors goes to infinity Roberts
and Postlewaite (1976). Thus, assuming a very large number of market participants, the conic
market-clearing proposal tends towards incentive compatibility, i.e., at the limit participants bid
according to their true preferences. The conditions under which incentive compatibility is satisfied
by Mc is akin to the prevalent LP-based electricity markets, thereby preserving this desirable
economic property in the move towards a SOCP-based market-clearing framework.

Beyond the desirable economic properties discussed so-far, we analyze the robustness of the
market-clearing outcomes resulting from Mc against small changes in parameters. Strong duality
aside, in the context of a market-clearing problem, this property is crucial to be studied for SOCP
problems. Robust solvability refers to the property of an SOCP problem such that it remains
solvable and obtains the optimal solution even when the problem parameters are changed by
arbitrary small perturbations. Proposition 1.4.6 in Ben-Tal and Nemirovski (2001) establishes
that robust solvability is guaranteed by the strict feasibility of both primal and dual problems.
The following corollary to Theorem 1 formalizes robust solvability of the conic market-clearing
problem.

Corollary 2 (Robust Solvability of Mc). The market-clearing problem Mc
is robust solvable, i.e.,

for the p 2 P commodities traded in the market, both the optimal contributions q
?
ip, 8i and the

optimal prices ⇧
?
p obtained, are robust against small perturbations in the parameters comprising

the bids Bi, 8i 2 I.

The proof to Corollary 2 is a direct consequence of Theorem 1. This result ensures robust
outcomes from a large-scale market-clearing problem admitting hundreds (possibly thousands) of
market participants and their SOC constraints. Robust solvability status of the market-clearing
problem implies that numerical pathologies arising from approximations, e.g., rounding-o↵ errors,
estimation of uncertain parameters, etc. do not cause solvability-related issues.
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4. Numerical Studies

We perform numerical experiments on a 24-node electricity system wherein the various market
participants, comprising of 6 wind power producers, 9 flexible and 3 inflexible power producers
(PPs), 3 identical energy storage units (ESUs) owners, and 17 inflexible consumers, are connected
at the nodes as shown in Figure 2(a). The system data is adapted from Conejo et al. (2010) to
include the wind farms and ESUs. We study the market-clearing outcomes under various renew-
able energy share (RES) paradigms5, ranging from 10% to 60% of the total energy demand from
consumers met by the wind power producers. The wind power producers bid at zero prices to
ensure acceptance of bids, and ESU owners bid at prices lower than the cheapest flexible PP. We
assume that the inflexible loads exhibit perfect inelasticity of demand, rendering the social welfare
maximization problem equivalent to finding cost-minimal dispatch, in expectation, for PPs and
ESUs to provide energy and flexibility services needed to meet the net demand6. To highlight the
impact of network congestion on spatial prices and quantities, we consider two network configura-
tions: (i) without any network bottlenecks and (ii) with network bottlenecks induced by reducing
capacities of three transmission lines of the network, shown in blue in Figure 2(a). Based on this
setup, §4.1 demonstrates the uncertainty-awareness of our market-clearing proposal, followed by an
analysis of the market-clearing outcomes and conic spatial equilibrium prices. In §4.2, we compare
the proposed SOCP market-clearing problem with two uncertainty-aware alternatives within the
LP domain. While we discuss our numerical results solely in the context of an uncertainty-aware
market framework in this section, the examples provided in the Supplementary Material can be
used to extend the market-clearing problem to include asset- and/or network-awareness.

4.1. SOCP-based Uncertainty-aware Energy and Flexibility Market

Recalling Example 1, we consider a chance-constrained electricity market-clearing problem
wherein two commodities, energy and adjustment policies, are cleared by the system operator.
The commodities are traded such that an uncertainty-aware spatial price equilibrium is achieved.
Optimal adjustment policies allocated to flexibility providers enable the mitigation of uncertainty
realized during the real-time operation, while look-ahead decisions are made by the system opera-
tor at the day-ahead market-clearing stage, see Figure 1. Activated during the real-time operation,
these policies are in per unit and imply the contribution of each flexibility provider towards mit-
igating the potential real-time imbalance in the system. For example, a flexibility provider may,
in the day-ahead market, be allocated a policy corresponding to 10% adjustment, implying that it
contributes to mitigating 10% of any type of imbalance (either over- or under-supply) during the
real-time operation. In addition to payments for energy, flexibility providers are paid for the flexi-
bility service upfront, i.e., at the day-ahead stage. Considering the novelty of admitting adjustment
policies as opposed to the conventional flexible capacity to meet the uncertain net demand, we pro-
vide insights into the endogenous consideration of uncertainty and quantify the flexibility payments
in the following. The modeling of market participants, chance-constrained market-clearing problem
and its SOCP reformulation (which we refer to hereafter as Mcc) is provided in the Supplementary
Material.

5These paradigms are derived by suitably varying the installed capacity of the wind farms while dimensioning
the ESUs such that the total available charging/discharging capacity remains fixed at 12.5% of the total wind
farm installed capacity. Such dynamic dimensioning of storage-related flexibility is crucial to ensure market-clearing
feasibility for the high RES paradigms.

6Here, net demand refers to the energy demand from inelastic loads reduced by the production from wind farms
during the real-time operation. There is no uncertainty in the inelastic demand. The expected net demand based
on the day-ahead wind power production forecasts for the 50% RES paradigm is shown in Figure 2(b). Naturally,
the market operator faces high uncertainty in the hours with smaller net demand due to the high share of weather-
dependent renewable energy.
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Figure 2: (a) 24-node electricity network showing a visualization of spatial prices of energy for the network configu-
ration with bottlenecks, (b) expected net demand for the 50% RES paradigm, (c) system-wide prices for energy and
(d) the total hourly flexibility payments for various RES paradigms

Impact of congestion and uncertainty on prices: The density plot in Figure 2(a) visualizes the im-
pact of network bottlenecks on the day-ahead energy prices for hour 23 under the 50% renewable
energy share paradigm. Figures 2(c) and 2(d) show the commodity prices for the network config-
uration without bottlenecks for the various RES paradigms. Observe that with higher shares of
renewable energy, the payment made by the market operator towards flexibility increases, comple-
mentary to the gradual reduction in the energy price due to wind farms bidding with zero prices.
Overall, increasing uncertainty faced at the day-ahead market-clearing stage leads to lower energy
prices while the payments towards flexibility services increase, thereby resulting in the right market
signals for investments in flexibility over the long run. Note that, since the adjustment polices are
quantified in per unit, the hourly flexibility payments shown in Figure 2(d) correspond to total
payments made by the market operator towards flexibility, adopting an allocation determined by
the adjustment policies of individual flexibility providers and as such, following a di↵erentiated

pricing scheme. We now discuss the allocation of adjustment policies and provide further insights
into the pricing of flexibility.

Flexibility allocation and payments: For the 50% RES paradigm, Figures 3(a)-3(f) show the optimal
allocation of dispatch and adjustment policies to the PPs (f1, f2, . . . , f12) and to the ESUs
(s1, s2, s3) for selected hours of the day for both network configurations. First, observe that
non-zero adjustment policies are only allocated to flexibility providers that are also dispatched for
the commodity energy, which is consistent with the requirement that both over- and under-supply
imbalances during the real-time operation are mitigated by the flexibility delivered. Second, the
network configuration with bottlenecks mandates the allocation of adjustment policies to more
number of flexible power producers, as network congestion is expected to impact the flexibility
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Figure 3: Market-clearing outcomes in hours 4-12: (a)-(b) show the adjustment policies, (c)-(f) show the nominal
dispatch of power producers (PPs) and energy storage units (ESUs) for both the network configurations, and (g)-(h)
show the flexibility payments and (i)-(j) show the flexibility payment rates (FPRs)
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delivery during real-time operation. However, note that ESUs are not allocated adjustment policies
in this configuration. This is explained by (i) the availability of flexible PPs in favorable locations
of the network with respect to congested power lines, and (ii) the inter-temporal constraints and
end-of-day energy balance requirement for ESUs (see Supplementary Material). Indeed, for the
paradigm with 60% RES (not shown in the Figure), ESUs in the case with network bottlenecks are
allocated non-zero adjustment policies to contribute towards flexibility provision, with the market-
clearing problem choosing a more expensive flexibility allocation, o↵set by the reduced cost of
energy provision. Finally, observe in Figure 3(b) that the adjustment policies may take negative
values, implying that the action (increasing/decreasing) production by power producers may be
in opposition to the system requirement (under-/over-supply), provided it leads to cost-optimal
flexibility provision under congested network conditions.

Figures 3(g)-3(h) show the flexibility payments made to flexibility providers under the two
network configurations. Flexibility payments are, in general, higher for the case with network
bottlenecks as compared to the case without any bottlenecks. Moreover, as previously-discussed in
reference to Figure 2(d), flexibility payments are higher for hours with high production from wind
farms. In the short run, this incentivizes market participants to bid their flexibility in these hours.
To further analyze how flexibility is valued and paid for by the market operator, we introduce
an ex-post parameter called flexibility payment rate (FPR). Defined for each flexibility provider i,
FPR is the rate in $/MWh at which she is paid for the flexibility service:

FPRit =
[⇧?

p](ni,t) ⇥ ↵?
it

|q̂?
it � qit|

, (10)

where [⇧?
p](ni,t) retrieves the price of the commodity flexibility service at the node ni where the

participant i is located, q̂?
it and ↵?

it denote the nominal dispatch and adjustment policy allocated to
the participant i, respectively. The quantity qit is the dispatch under the perfect forecast case, i.e.,
when the day-ahead market-clearing is deterministic. We obtain qit by solving the market-clearing
problem Mcc assuming day-ahead forecasts are realized perfectly during the real-time operation,
such that all adjustment policies are set to zero, i.e., ↵it = 0, 8t, 8i 2 I. Figures 3(i) - 3(j) show
the FPRs for the various participants for the two network configurations. Observe that, equal
segments within each bar indicate equal FPRs for all flexibility providers for a given hour. First,
we note that, in general, more flexibility providers being allocated non-zero adjustment policies in
the network configuration with bottlenecks leads to lower FPRs for the flexibility providers contrary
to the one without bottlenecks. A notable exception is hour 7 in the case without bottlenecks,
wherein ESUs are paid for the flexibility at very high rate. This is a consequence of two contributing
factors: (i) ESUs are dispatched with small nominal quantities in the hours 7 and 8 (see Figure
3(e)) which implies that their ability to provide both charging and discharging flexibility is valued
highly, and (ii) the net demand follows a steep rise in the hours 6-8 (see Figure 2(b)) and as
a result the market-clearing problem faces a scarcity of not only flexible capacity, but also the
ramping ability needed to meet this change in uncertainty. In contrast, in hour 8, while the ESUs
are still nominally dispatched close to zero, the flexibility is no longer scarce in the system as the
net demand rises su�ciently enough to lead to the nominal dispatch of power producer f1, thereby
homogenizing the FPRs again. Overall, the FPR for a flexibility provider depends on a number
of factors, including the level of uncertainty perceived by the system (quantified by the forecast
error covariance matrix as well as the day-ahead forecasts), the location of the flexibility provider,
congestion in the network and whether other flexibility providers are available.

4.2. Comparison with LP-based Uncertainty-aware Benchmarks

Next, using numerical simulations corresponding to realizations of the uncertain wind power
production, we compare the market-clearing outcomes and performance of the proposed SOCP-
based uncertainty-aware market-clearing problem Mcc to alternatives within the LP-domain.
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Figure 5: In-sample market-clearing cost in the various RES paradigms considered

We consider two LP-based market-clearing problems as benchmarks: R1 and R2. While it
is most closely related to the currently-operational electricity markets, the deterministic market-
clearing problem R1 considers uncertainty during the day-ahead clearing stage by commissioning
flexibility in the form of reserve capacity. The procured capacity is subsequently activated in real-
time electricity markets, cleared closer to physical delivery. To ensure a cost-optimal allocation
of the reserve capacity, the market operator enforces a exogenously-determined minimum reserve
requirement to procure flexible capacity from flexibility providers. Market-clearing problem R2
considers uncertainty based on day-ahead scenarios for realizations of uncertain renewable energy
production. The market operator seeks to maximize the expected social welfare under uncertainty,
resulting in a day-ahead schedule which is then adjusted during real-time operation for each of
the foreseen scenarios. Similarly to Mcc, this approach considers uncertainty endogenously as
parameterized by the scenarios considered while solving the market-clearing problem. However,
leaving aside the fundamental question of trusting the scenario-generating agent, this approach
mandates a large number of scenarios to appropriately represent the uncertainty, thereby, limiting
its practical adoption from a computational perspective. Figure 4 illustrates the market-clearing
activities, starting with pre-market processing of forecast error samples to generate statistical mo-
ments (mean and covariance), to dimension the reserve requirement and to generate scenarios, for
Mcc, R1 and R2, respectively. In our numerical studies, we impose a minimum reserve require-
ment such that the probability of demand curtailment, due to unavailability of flexible capacity
to be dispatched during the real-time operation, is less than 5% for the forecast error samples
considered. Moreover, observe that the real-time operation in Mcc does not involve pricing and
can be done without re-optimization provided uncertainty bounds defined by statistical moments
are reliable, whereas both R1 and R2 involve real-time markets, whose outcomes are used to price
flexibility services. As with Mcc, the market-clearing formulations and further details on the two
reference problems R1 and R2 are provided in the Supplementary Material.
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In-sample market-clearing results: First, we study the in-sample performance of the market-clearing
problems. In-sample refers to the forecast samples used in the pre-market stage to obtain the pa-
rameters and scenarios for the market-clearing problems Mcc and the benchmarks R1 and R2, see
Figure 4. For the 6 wind farms in the network, we consider 100 forecast error samples drawn from
a multivariate Gaussian distribution having zero mean and a standard deviation of 10% of the
nominal day-ahead forecast values. Consequently, the safety parameter r" is the inverse cumula-
tive distribution function of the standard Gaussian distribution evaluated at (1 � ")–quantile. For
Mcc, we fix the system operator’s constraint violation probability at " = 0.05. Figure 5 shows a
comparison of the expected day-ahead market-clearing cost for the three market-clearing problems
under the two network configurations in the various RES paradigms. Observe that, with increas-
ing share of renewable energy, due to its exogenous consideration of uncertainty, market-clearing
problem R1 performs increasingly worse compared to the other problems for both the network
configurations, leading to infeasibility of market-clearing problem at 60% renewable energy share
for the case with network bottlenecks. Furthermore, market-clearing problems Mcc and R2 result
in comparable in-sample expected cost. However, it is worth noting that, contrary to Mcc, R2 does
not provide any guarantees on the feasibility of market-clearing problem when faced with scenarios
beyond those considered as in-sample7. We discuss the out-of-sample performance further in the
following. The first two rows in Table 1 provide a comparison for the cost and computation times
of the various market-clearing problems in the 50% RES paradigm.

Out-of-sample performance: To examine the out-of-sample performance, we perform a determinis-
tic real-time market clearing such that the day-ahead decisions made for each of the market-clearing
problems are fixed while adjustments are made in real-time to meet the uncertainty realization.
For the market-clearing problem Mcc, this implies that the flexible market participants adjust their
production in real-time strictly in accordance to the adjustment policies assigned at the day-ahead
market-clearing stage. On the other hand, for the LP-based reference market-clearing problems R1
and R2, the adjustments in real-time are allowed up to the flexible capacity limits obtained at the
day-ahead stage. Consistent with the prevalent practice on handling real-time adjustments in elec-
tricity markets, we introduce a 10% premium over the bid prices in the day-ahead market-clearing
stage to incentivize the market participants to adjust their schedule during real-time operation.
Since some wind forecast scenarios may lead to infeasibility of the market-clearing problem due
to unavailability of flexibility during the real-time operation, we introduce contingency actions in
the market-clearing that correspond to load shedding and wind curtailment respectively. Variables
corresponding to these contingency actions are penalized in the market-clearing objective such that
they are the last resort in ensuring supply-demand balance.

We prepare a test dataset comprised of 500 wind forecast scenarios, distinct from those used
for in-sample simulations, drawn from the same multivariate Gaussian distribution. The box and
whiskers plots in Figure 6 show the distribution of the resulting out-of-sample cost for the market-
clearing problems under the 50% RES paradigm. For each box, the central line indicates the
median, whereas the ends denote the 25th and 75th percentiles. The whiskers extend upto 1.5
times the inter-quartile range, while remaining values are shown as outliers in the form of rings.
The second part of Table 1 provides the results from the out-of-sample simulations. First, referring
to Figure 6, observe that the ordering in terms of expected cost is preserved from the in-sample
simulations, i.e., R1 leads to higher costs. We note that market-clearing problem R2 results in

7Depending on the constraint violation probability " and the number of decision variables, (Alamo et al., 2015,
Theorem 4) provides an analytical expression for the number of scenarios that must be considered while solving R2
to obtain the same probabilistic feasibility guarantee as Mcc. For the network considered in this numerical study,
this evaluates to > 80, 000 scenarios, thereby rendering problem R2 unable to provide such a guarantee while being
cleared within the desired day-ahead market-clearing solve times (typically, about 1-2 hours).
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Table 1: In-sample and out-of-sample performance of market-clearing problems for the 50% RES paradigm

Parameter Unit
No network bottlenecks With network bottlenecks

Mcc R1 R2 Mcc R1 R2

In-sample expected cost $1000 221.85 257.85 216.49 256.62 377.56 235.16
Market-clearing computation time s 2.08 0.22 178.23 2.38 0.27 215.5

Out-of-sample expected cost $1000 221.76 259.57 224.29 256.51 396.86 244.28
Out-of-sample infeasibility % 0.2 3.2 0 0.2 0.6 8.8
Load shedding probability % 0 0 0 0 1.0 0.4
Wind curtailment probability % 0 0 46.0 0 0 50.8
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Figure 6: Out-of-sample market-clearing cost comparison in the 50% RES paradigm

highly variable out-of-sample costs compared to the SOCP market-clearing problem Mcc. Second,
the out-of-sample expected cost for Mcc is close to the in-sample case, mentioned in Table 1. On
the other hand, market-clearing problem R1 exhibits an increase in cost of 0.75% and 5.34% over
their in-sample values for the network configurations with and without bottlenecks, respectively.
Similarly, problem R2 results in out-of-sample expected cost which exceeds that in-sample expected
cost by 3.54% and 4.1%, respectively for the network configurations with and without bottlenecks.
Finally, both the LP-based market-clearing problems endure load shedding or wind curtailment
when faced with unknown forecast samples. These results highlight how the proposed SOCP-based
uncertainty-aware market-clearing problem outperforms the prevalent LP-based alternatives. Next,
we provide comparative insights on the day-ahead market-clearing outcomes for the three problems.

Day ahead-market-clearing outcomes: For the 50% RES paradigm, Figure 7 compares the day-
ahead market-clearing outcomes among the three problems for the network configuration without
any bottlenecks. Observe that, as expected, the energy price in Figure 7(a) closely follows the
swings in net demand, shown in Figure 2(b). Figure 7(b) compares the flexibility payment at the
day-ahead market-clearing stage for the problems Mcc and R1. In contrast to Mcc wherein flexibil-
ity payments are a result of the dual solution to the market-clearing problem, flexibility payments
in R1 correspond to the primal solution, i.e., the payments made towards the reserve capacity to
meet the minimum reserve requirement. The di↵erence in hourly flexibility payments illustrate
the challenge in dimensioning the capacity-based reserves properly. Note that, in absence of any
specific capacity reservation or a meaningful flexibility balance at the day-ahead clearing stage, R2
mandates the real-time markets for pricing of flexibility services and is therefore omitted from the
comparison8. Figures 7(c) and 7(d) show the scheduled dispatch of PPs and ESUs, respectively,
for a selection of hours of the day. On account of the minimum reserve requirement associated with

8A real-time balance is indeed enforced in R2, such that real-time adjustments in each scenario is aligned with
the supply-demand balance. However, the price convergence between day-ahead energy prices and real-time prices
is a desirable property to maximize welfare, as discussed in Zavala et al. (2017). This price convergence is in fact
a characteristic of our implementation R2, but it limits the ability to explicitly extract values corresponding to
flexibility payment either from the primal or dual solutions to the market-clearing problem.
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Figure 7: Day-ahead market-clearing outcome for various problems: (a) hourly system-level energy price, (b) hourly
flexibility payment, (c) dispatch of power producers (PPs) and (d) dispatch of energy storage units (ESUs)

market-clearing problem R1, in contrast with the other two problems which consider uncertainty
endogenously, the dispatch involves higher generation in hours 7 through 12. The excess genera-
tion, which partly explains the higher market-clearing cost associated with R1, is used to charge
the ESUs in the network such that su�cient flexible capacity is available to meet the minimum
reserve requirement. This e↵ect further underscores the importance of endogenous consideration
of uncertainty within the market-clearing framework.

5. Concluding Remarks

We proposed and analyzed a new conic formulation for forward markets, which we applied
to the specific case of electricity markets. Our contribution is threefold. From a market design
perspective, we revisited the spatial price equilibrium problem beyond the LP framework by for-
mulating the market-clearing problem within an SOCP framework. From a theoretical perspective,
we relied on Lagrangian duality theory for SOCP problems to characterize the solution to the spa-
tial price equilibrium problem involving rational and self-interested market participants in terms
of optimality and robustness to parameter perturbation. We derived analytical expressions for
conic spatial prices of the traded commodities and provided analytical proofs to demonstrate that
moving towards conic markets for electricity does not incur the loss of any desirable economic
properties, i.e., the proposed conic market retains market e�ciency, cost recovery and revenue
adequacy, under common assumptions also applicable to LP-based markets. Finally, from a prac-
titioner’s perspective, we illustrated the generality of our proposed market-clearing framework by
defining a bid format for conic markets.

Our conic market proposal admits SOC-representable nonlinearities underlying the costs and
constraints of market participants and the system operator to enable an uncertainty-, asset- and
network-aware market-clearing problem. This step in the evolution of electricity markets is crucial
for the successful transition of electricity systems worldwide from dispatchable, fossil fuel–based
system towards a weather-dependent, renewable energy–based system, supported by a hetero-
geneous mix of energy and flexibility providers. Our numerical studies leverage in-sample and
out-of-sample simulations to showcase the benefits of the proposed SOCP-based market-clearing
problem over the LP-based benchmarks in terms of social welfare and its invariability, endogenous
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representation of uncertainty, appropriate dimensioning of flexibility need, and guarantees on the
feasibility of the market-clearing problem. We provide insights into payments associated with the
flexibility procurement based on adjustment policies, which are central to our uncertainty-aware
SOCP-based market-clearing proposal.

This paper opens up a variety of important directions for future work. First, considering
the generality of the proposal, it is potentially interesting to model market-clearing use cases
that involve one or more of the attributes related to uncertainty-, asset- and network-awareness.
For instance, the modeling examples and the theoretical results developed in this work can be
used to study the coordination between the transmission and distribution system operators in an
uncertainty- and network-aware setting. This enables the flexibility available at the distribution
level to be appropriately harnessed and priced within the market framework while considering a
physically-accurate network constraint representation. Along similar lines is the use case studying
the market-based coupling of the electricity and natural gas sectors. Here, the focus of the analysis
potentially broadens from merely an optimal network- and asset-aware flexibility procurement to
one that designs well-aligned incentives and risk measures to ensure a reliable and resilient system
operation in both the interdependent sectors. Second, the conic market bids introduced in §2.4
merit further evaluation in terms of acceptance by market participants, alignment with market
regulatory agencies as well as adaptations needed in the prevalent market-clearing algorithms to
adopt them. Intended to accelerate their practical adoption, such evaluations could take shape as
market simulations and participant-specific sensitivity studies to systematically quantify the costs
and benefits of moving towards conic electricity markets. Third, the theoretical results discussed
in the paper can be extended to include market participants that act strategically. One can then
leverage conic complementarity programs to investigate how exercising market power influences
the market-clearing outcomes, specifically in the context of the flexibility payments involved in
uncertainty-aware use case analyzed in §4, and more generally regarding the satisfaction of desired
economic properties. Another important direction to pursue is the extension of the analytical
results we derived on the Lorentz cone to the cone of semidefinite matrices, which results in an
SDP-based market-clearing framework. Further generalization over the LP framework aside, such
an extension could potentially give rise to markets that consider uncertainty under the paradigm of
distributionally-robust chance-constrained optimization and that admit an SDP-based convexifica-
tion approach for non-convex power flows in the electricity network. Finally, beyond the electricity
system, the theoretical results in this work are of potential interest in competitive settings involv-
ing physical or non-physical systems wherein cost- and constraint-based nonlinearities currently
mandate the use of approximation techniques via linearization.

Appendix A. Lagrangian Duality for SOCP Problems

In Appendix A.1, we provide a concise theoretical background of SOCP duality, while directing
interested readers to Lobo et al. (1998), Ben-Tal and Nemirovski (2001) and Alizadeh and Goldfarb
(2003) for details. The dual problem to market-clearing problem Mc is provided in Appendix A.2.

Appendix A.1. Preliminaries

Consider an arbitrary SOCP problem in variable x 2 RN of the form

min
x

c
>
x s.t. kAjx + bjk2

 d
>
j x + ej , 8j = 1, 2, . . . , J, (A.1)

with parameters c 2 RN , Aj 2 Rkj⇥N , bj 2 Rkj , dj 2 RN and ej 2 R. Based on (1), the SOC
constraint in problem (A.1) may be expressed as


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>
j
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x +
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
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where Cj ✓ Rkj+1 is the standard second-order cone and generalized inequality 6Cj denotes a
partial ordering over the cone Cj . The Lagrangian function for (A.1) writes as

⇥(x, �1, . . . , �J) = c
>
x �

JX

j=1

�>
j
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Aj

d
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
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�◆
,

where �j 2 Rkj+1 for j = 1, 2, . . . , J are Lagrange multipliers. The dual function is given by
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Lastly, the dual problem to (A.1) after substituting �j =
⇥
µ>

j ⌫j
⇤>

, such that µj 2 Rkj and
⌫j 2 R+ are auxiliary dual variables, can be written as

max
µj ,⌫j

�
JX

j=1

(b>
j µj + ej⌫j) (A.2a)

s.t.
JX

j=1

(A>
j µj + dj⌫j) = c (A.2b)

kµjk2
 ⌫j , 8j = 1, 2, . . . , J. (A.2c)

Similarly, we write an arbitrary SOCP problem with rotated SOC constraints as

min
x

c
>
x s.t. kAjx + bjk2

2
 d

>
j x + ej , 8j = 1, 2, . . . , J. (A.3)

From the definition of a rotated second-order cone (Mosek ApS, 2021), we have the equivalence
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where CR

j ✓ Rkj+2 denotes the rotated second-order cone. As before, defining Lagrange multipliers

�j = [µ>
j ⌫j j ]> 2 Rkj+2 for j = 1, 2, . . . , J , such that µj 2 Rkj , ⌫j 2 R+ and j 2 R+, the

Lagrangian function for the problem (A.3) can be written as
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from which the dual problem is derived as

max
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Appendix A.2. Dual Problem to Problem Mc

Let Dc denote the dual problem to the market-clearing problem Mc. We now derive Dc relying
on the dualization approach in Appendix A.1. Let ⇥(qi, zi, µQ

it , Q

it , ⌫Q

it , µij , ⌫ij , �i, �p, %
t
, %t)

denote the Lagrangian function of Mc given by
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For notational convenience, let cost vectors for various hours be stacked to obtain c
L

i 2 RKiT and

a block diagonal matrix C
Q

i = C
Q

i1 � · · · � C
Q

iT 2 RKiT⇥KiT . Let µQ

i 2 RKiT and ⌫Q

i 2 RT denote

the stacked dual variables µQ

it and ⌫Q

it , respectively. Let b�i 2 RKiT denote the stacked version of

an auxiliary dual variable b�it 2 RKi for each market participant i with its k-th element given by

b�itk =

(
[Gip�p]t, if k = p,

0, otherwise.
(A.5)

This auxiliary dual variable represents the contribution of each market participant towards the
trades of the P commodities in the market. Finally, we define an auxiliary variable representing
the i-th participant’s contribution towards network congestion, denoted as b%it 2 RKi , given by

b%itk =

(
1>[Gip](:,t)Ini 

>(%t � %
t
), if k = p,

0, otherwise,
(A.6)

where 1 2 RT and Ini 2 RN is an indicator vector having the element corresponding to the node
ni 2 N where participant i is located as 1, while all other elements are zero. The variables b%it are
then stacked to obtain b%i 2 RKiT . With these substitutions, we write the dual problem Dc as

max
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kµijk2
 ⌫ij , 8j 2 Ji, 8i. (A.7e)

(A.5) � (A.6), 8k = 1, 2, . . . , Ki, 8t, 8i, (A.7f)

which is an SOCP problem in variables ⌅ = {µQ

i , Q

it , ⌫Q

i , µij , ⌫ij , �i, �p, b�i, %
t
, %t, b%i}.

Appendix B. Proofs

Proof of Theorem 1

First, we prove the existence of essentially strictly feasible solutions to the market-clearing
problem Mc and its dual Dc, inspired by the theory in Lobo et al. (1998). From Definition 4,
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finding strictly feasible solutions to the primal market-clearing problem Mc reduces to finding
tuples (qi, zi), 8i, which strictly satisfy the SOC constraints (4b)-(4c). Likewise, proving strict
dual feasibility reduces to finding tuples (µQ

it , Q

it , ⌫Q

it ), 8t, 8i and (µij , ⌫ij), 8j 2 Ji, 8i that
strictly satisfy the SOC constraints (A.7d)-(A.7e), respectively. Relying on a variant of the big-M
method widely applied to LP problems (Fortuny-Amat and McCarl, 1981), we require the following
auxiliary result to find strictly feasible solutions to Dc.

Lemma 1. Given the feasibility of the market-clearing problem Mc
, for each market participant

i 2 I, there exists a large enough finite scalar bound D
Q
i 2 R on the Euclidean norm of qi given by

kqik2
 D

Q
i , such that the optimal solution to Mc

, denoted by (q?
i , z

?
i ), is unchanged with addition

of the norm bounds.

Proof. For each participant i 2 I, the Ki number of decision variables at each hour t constituting
qit are either the commodity contributions [qip]t for the p 2 P physical commodities discussed in
§2.1 or any physical state variables pertaining to the participants. Hence, qit, 8t are finite and
both bounded above and below. Observe that, a bounded qit results in a bounded zit due to (4b).

Given feasible points qi, 8i, one could arbitrarily choose scalars D
Q
i such that D

Q
i � kqik2

, 8i and

iteratively solve Mc for values of D
Q
i large enough such that the optimal solution (q?

i , z
?
i ), 8i no

longer changes over the subsequent iterations. Such an iterative scheme would result in the norm

bounds D
Q
i , 8i, thereby completing the proof.

Due to Definition 4 and Lemma 1, we write a reduced form of market-clearing problem Mc

while retaining only the SOC constraints with additional norm bound constraints
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where Lagrangian multipliers µi 2 RKiT and ⌫i 2 R+ are associated with the norm bound
constraints. Following the approach in Appendix A.1, the dual problem to (B.1) in variables
⌅R = {µQ

i , Q
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Proving the existence of strictly feasible points for (B.2) is straightforward. Choosing any arbitrary
vectors µij , 8j 2 Ji, 8i and µQ

it , 8t, 8i, we can compute the values of ⌫ij > kµijk2
and Q

it >���µQ

it

���
2

, while ⌫Q

it = 1 from (B.2b). Now, the variable µi follows from the equality (B.2c) and
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consequently, ⌫i can be any number larger than kµik2
. Hence, we have found at least one strictly

feasible solution to (B.2), which proves essentially strict feasibility of the dual problem Dc, given
that Lemma 1 holds.

Next, we prove essentially strict feasibility of the primal market-clearing problem Mc employing
the so-called Phase-I method, discussed in Boyd and Vandenberghe (2004, §11.4). Consider an
SOCP problem in variables (qi, zi, xi, xQ

i ) where xi 2 R and xQ

i 2 R are arbitrary slack variables

min
qi,zi,xi,x

Q
i

X

i2I

X

t2T
(zit + c

L

it
>
qit) +

X

i2I
(xi + xQ

i ) (B.3a)

s.t.
���CQ

itqit

���
2

2

 zit + xQ

i , 8t, 8i (B.3b)

kAijqi + bijk2
 d

>
ijqi + eij + xi, 8j 2 Ji, 8i. (B.3c)

Observe that, obtaining strictly solutions to the primal problem (B.3) and its dual problem is
straightforward. For instance, choosing

qi = 0, xi > max
j2Ji

kbijk2
� eij , 8i, (B.4a)

any zi 2 RT
+ and xQ

i > max
t2T

� zit, 8i, (B.4b)

gives a strictly feasible primal solution to (B.3). Likewise, a strictly feasible solution for the dual
problem to (B.3) can be found by an approach (omitted from presentation, for the sake of brevity)
discussed above, i.e., by adding non-binding upper bound constraints on the primal variables
(xi, x

Q

i ), 8i. Consequently, Alizadeh and Goldfarb (2003, Theorem 13) establishes strong duality
for (B.3) due to strict primal and dual feasibility. We now provide an auxiliary result relating the
augmented problem (B.3) to the primal market-clearing problem Mc.

Lemma 2. For the tuple (q?
i , z

?
i , x?

i , xQ
i

?
), 8i denoting the optimal solution to problem (B.3),

only one of the following conditions holds:

(i) if x?
i < 0, 8i and xQ

i

?
< 0, 8i, then (q?

i , z
?
i ), 8i is strictly feasible for the problem Mc

, or

(ii) if for any participant i, x?
i = 0 or xQ

i

?
= 0, then for that participant (q?

i , z
?
i ) is strictly

feasible for problem Mc
, provided eij > kbijk2

, 8j 2 Ji and the quadratic cost components

c
Q
it 6= 0, 8t.

Proof. First, observe that if the tuple of optimal solution solution (q?
i , z

?
i , x?

i , xQ

i

?
), 8i to problem

(B.3) is such that for any i, x?
i > 0 or xQ

i

?
> 0, then it implies that problem Mc is infeasible,

which contradicts our assumption in Theorem 1. Hence, for feasibility of the problem (B.3), we
have xi  0, 8i and xQ

i  0, 8i. Now, from (B.3b) and (B.3c), it is clear that if both x?
i < 0, 8i

and xQ

i

?
< 0, 8i hold, we have found (q?

i , z
?
i ), 8i which strictly satisfy the SOC inequalities in Mc,

i.e., (4b) and (4c). Conversely, if the optimal solution is obtained such that for any i, x?
i = 0 or

xQ

i

?
= 0, then (q?

i , z
?
i ) strictly satisfies the SOC inequalities corresponding to the i-th participant

in Mc under some mild conditions derived from (B.4). Note that xQ

i

?
= 0 > max

t
� zit holds

true only if zit > 0, 8t. This is ensured by non-zero quadratic cost components of the market
participant i at all hours, i.e., c

Q

it 6= 0, 8t. Moreover if any c
Q

it = 0, then the constraint (4b)
corresponding to that hour is trivially satisfied and therefore, can be possibly eliminated. Lastly,
from x?

i = 0 > max
j2Ji

kbijk2
� eij , we obtain kbijk2

� eij < 0, 8j 2 Ji, which is then a requirement

for q
?
i = 0 from (B.4a) to be strictly feasible for (4c). This completes the proof.
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From Lemma 2, solving problem (B.3) leads to (qi, zi), 8i that are essentially strictly feasible
for Mc under some mild conditions. Evident from the Examples and formulations in the Supple-
mentary Material, these conditions are met in the practical implementations of Mc. We have now
proved that an essentially strictly feasible solution to primal problem Mc exists.

Essentially strict feasibility of the primal and dual problems is necessary and su�cient for
strong duality to hold for the primal-dual pair of problems Mc and Dc (Ben-Tal and Nemirovski,
2001, Theorem 1.4.4), thereby completing the proof.

Proof of Theorem 2

The proof follows from the partial Lagrangian function of Mc, obtained by keeping the con-
straints (4b)-(4d) and relaxing the others, which we write as

⇥̂ = �
X

p2P
�>

p

X

i2I
Gipqip +

X

t2T
%>

t

0

@
X

n2N
[ ](:,n)

0

@
X

i2In

X

p2P
[Gipqip]t

1

A � s

1

A

�
X

t2T
%>

t

0

@
X

n2N
[ ](:,n)

0

@
X

i2In

X

p2P
[Gipqip]t

1

A + s

1

A .

With the substitution of the auxiliary variable Q
inj
p , 8p 2 P defined in (9) followed by a rearrange-

ment of terms, the partial Lagrangian equivalently writes as follows

⇥̂ = �
X

p2P
�>

p Q
inj

p
>
1

| {z }
System-wide balance

+
X

t2T
%>

t

0

@
X

p2P
 [Qinj

p ](:,t)

1

A �
X

t2T
%>

t s �
X

t2T
%>

t

0

@
X

p2P
 [Qinj

p ](:,t)

1

A �
X

t2T
%>

t
s

| {z }
Line flow limits

,
(B.5)

where the vector of ones 1 2 RN . Here, the partial Lagrangian comprises of terms corresponding
to the system-wide balance equalities and the line flow limit inequalities, as indicated. In the sense
of Bohn et al. (1984), the spot price of electricity for consumers at a given hour is analytically
expressed as the sum of shadow price of the system balance constraint and the sensitivity of changes
in the demand to the flow in the capacity-constrained transmission lines. We denote these optimal
prices ⇧p 2 RN⇥T for the p-th commodity and provide an analytical expression in the following.
We derive an expression for the spot price of commodities as the negative sensitivity of the partial
Lagrangian (B.5) to the nodal injections as

@⇥̂

@[Qinj
p ](:,t)

= �
⇣

� 1[�p]t + >(%t � %
t
)
⌘
, 8p, 8t, (B.6)

where the negative sign originates from the sign convention adopted in this work, such that the
consumption (withdrawals) are given by qip 2 RT

�. For compactness of expression, we extend (B.6)
to all hours by defining auxiliary variables ⇢, ⇢ 2 RL⇥T and⇤p 2 RN⇥T , such that ⇢ = [%1 · · · %T ],

⇢ = [%
1

· · · %
T
] and ⇤p = 1> ⌦ �p. Lastly, we express the spatial prices as

⇧p = ⇤p � >(⇢ � ⇢), 8p, (B.7)

which are analogous in structure to conventional LMPs prevalent in LP-based market-clearing
problems. Theorem 1 proves strong duality for the market-clearing problem Mc, thereby ensuring
the optimality of the spatial prices when the dual variables in (B.7) are replaced by their values at
the optimal solution.
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Proof of Theorem 3.

To prove the equivalence of the optimization problem Mc with the equilibrium Ec, we show that
the KKT conditions of the equilibrium problem are identical to those of the optimization. First, for
the network operator’s congestion rent maximization problem (7), let ⇥NO denote the Lagrangian
function of the problem (7). We write the KKT conditions defining the optimal solution as

• Stationarity condition:

@⇥NO

@yt
= !t + >(%t � %

t
) = 0, 8t (B.8a)

• Primal feasibility, dual feasibility and complementarity conditions:

� yt  s; %
t
� 0; %

t
� ( yt + s) = 0 (B.8b)

 yt  s; %t � 0; %t � ( yt � s) = 0, (B.8c)

where � denotes the Hadamard (element-wise) product operator.

For each participant i 2 I, let ⇥i(qi, zi, µQ

it , Q

it , ⌫Q

it , µij , ⌫ij , �i, b�ip) denote the Lagrangian
function for problem (6) given by

⇥i =
X

p2P
tr(⇧>

p Wip) �
X

t2T

⇣
zit + c

L

it
>
qit

�
�

X

t2T
!>

t

� X

p2P
[Wip](:,t)

�
+

X

t2T
!>

t

� X

p2P
Ini [Gipqip]t

�

+
X

t2T

⇣
µQ

itC
Q

itqit +
1

2
Q

it + ⌫Q

it zit

⌘
+

X

j2Ji

⇣
µ>

ij

�
Aijqi + bij

�
+ ⌫ij(d

>
ijqi + eij

�⌘

� �>
i (Fiqi � hi) + b�>

ip

⇣
Gipqip � W

>
ip1

⌘
(B.9)

Using the auxiliary dual variables µQ

i , ⌫i and parameters c
L

i , C
Q

i defined previously in Appendix
A.2, we write the KKT optimality conditions for a participant i 2 I as

• Stationarity conditions:

@⇥i

@qi
= �c

L

i + C
Q

i µQ

i +
X

j2Ji

�
A

>
ijµij + dij⌫ij

�
� F

>
i �i +

@

@qi

⇣
b�>

ip

�
Gipqip

�⌘

+
@

@qi

⇣ X

t2T
!>

t

�
Ini

X

p2P
[Gipqip]t

�⌘
= 0 (B.10a)

@⇥i

@Wip
= ⇧p � b�ip1

> �⌦ = 0, 8p 2 P, (B.10b)

@⇥i

@zi
= 1 � ⌫i = 0 (B.10c)

where ⌦ 2 RN⇥T :=
⇥
!1 !2 · · · !T

⇤
, such that the term

P
t2T !>

t

� P
p2P [Wip](:,t)

�

in the Lagrangian (B.9) reduces to tr(⌦>
Wip). Furthermore, from (B.8a), we have !t =

� >(%t � %
t
) at the optimal solution. With this and from the definitions of b�i and b%i in

(A.5) and (A.6), respectively, (B.10a) reduces to

@⇥i

@qi
= �c

L

i + C
Q

i µQ

i +
X

j2Ji

�
A

>
ijµij + dij

�
� F

>
i �i + b�i � b%i = 0 (B.10d)
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Similarly, the stationarity condition (B.10b) reduces to

@⇥i

@Wip
= ⇧p � b�ip1

> + >(⇢ � ⇢) = 0, 8p 2 P, (B.10e)

following the definitions of auxiliary dual variables ⇢ and ⇢ in Theorem 2.

• Primal feasibility, dual feasibility and complementarity conditions:

���CQ

itqit

���
2

2

 zit ;
���µQ

it

���
2

2

 Q

it⌫
Q

it , Q

it � 0, ⌫Q

it � 0 ;
h
µQ

it

>
⌫Q

it Q

it

i
2

4
C

Q

itqit

zit
1

2

3

5 = 0, 8t (B.10f)

kAijqi + bijk2
 d

>
ijqi + eij ; kµijk2

 ⌫ij , ⌫ij � 0 ;
⇥
µ>

ij ⌫ij
⇤ ⇣ 

Aij

d
>
ij

�
qi +


bij

eij

� ⌘
= 0, 8j 2 Ji

(B.10g)

Fiqi = hi; �i free (B.10h)

(A.5) � (A.6), 8k = 1, 2, . . . , Ki, 8t, 8i. (B.10i)

Equations (B.8), (B.10c)-(B.10i), 8i 2 I and (8) form the KKT optimality conditions for the
equilibrium problem Ec. Observe that, in addition to the primal and dual feasibility involving
SOC constraints, (B.10f)-(B.10g) ensure the conic complementarity condition is met at the optimal
solution (Alizadeh and Goldfarb, 2003, Theorem 16).

To see that the KKT optimality conditions for the optimization problem Mc are identical to
those of the equilibrium, observe that at the optimal solution:

(i) b�?
ip, 8i 2 I appearing in (B.10e) are attained such that b�?

ip = �?
p, 8p 2 P, 8i 2 I, where

�?
p, 8p 2 P corresponds to the system-wide price of the commodities. Therefore, (B.10e)

provides the analytical expression for conic spatial prices as formulated in Theorem 2, and

(ii) y
?
t , 8t appearing in (B.8b)-(B.8c) are obtained such that y

?
t =

P
p2P [Qinj

p
?
](:,t), 8t. This

follows from the market-clearing condition (8a). Note that the auxiliary variable Q
inj
p appears

in the partial Lagrangian of problem Mc, as shown (B.5).

This establishes the equivalence of the KKT optimality conditions for the centrally-solved opti-
mization problem Mc and the equilibrium problem Ec, thereby completing the proof.

Proof of Corollary 1

To prove existence of solutions to the competitive spatial price equilibrium problem Ec, we
recall Rosen (1965, Theorem 1) which provides an existence result for solutions to equilibrium
problems conditioned on the convexity and compactness of each participant’s strategy sets and
the continuity of their payo↵ functions. For the market participants i 2 I, while convexity and
closure of the strategy sets are given by the feasibility region defined by equalities and non-strict
inequalities (6b)-(6e), Lemma 1 proves that (qi, zi), 8i are bounded. Note that the quantities
bought or sold by the i-th participant Wip, 8p are bounded, conditioned on the boundedness of
qi due to (6e). Consequently, the strategy sets of the participants are convex as well as closed and
bounded, thereby satisfying the convexity and compactness conditions. Further, each participant’s
cost function (6a) is continuous in the decision variables. For the network operator, convexity and
compactness of the strategy set is given due to the network limits and continuity of the payo↵
function is satisfied by the linear objective function in (7). Therefore, from Rosen (1965, Theorem
1), this proves that at least one solution exists for the spatial price equilibrium problem Ec. To
derive conditions under which at most one solution exists to problem Ec, we refer to the equivalence
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of equilibrium problem Ec to the convex market-clearing optimization problem Mc established by
Theorem 3. From this equivalence, the uniqueness of allocations q

?
i , 8i at the equilibrium relies

on the strict convexity of the problem Mc, which we characterize in Remark 3. However, observe
that, the uniqueness of solutions to the dual market-clearing problem Dc is not given due to lack
of the strict convexity property of the dual objective (A.7a). Therefore, uniqueness of spatially-
di↵erentiated conic prices ⇧?

p, 8p given by (5) is not guaranteed. This completes the proof.

Proof of Theorem 4

(i) Market e�ciency: An e�cient market maximizes social welfare, such that no participant
unilaterally deviates from the market-clearing outcomes since each participant maximizes
her profit at the optimal allocations q

?
i and prices ⇧?

p, 8p. Under the assumption of per-
fectly competitive market participants, this is given if the KKT optimality conditions of the
centrally-solved optimization problem Mc and equilibrium problem Ec involving rational and
self-interested actors are identical, which we have established in Proof of Theorem 3.

(ii) Cost recovery: Mathematically, the non-negativity of payo↵ for the market participants
holds true, if at the optimal solution
X

p2P
tr(⇧?

p
>
W

?
ip) �

X

t2T

⇣
z?
it + c

L

it
>
q

?
it

⌘
�

X

t2T
!?

t
>
⇣ X

p2P

�
[W?

ip](:,t) � Ini [Gipq
?
ip]t

�⌘
� 0, 8i 2 I.

(B.11)

To prove that (B.11) holds, we derive dual problems to each participant’s profit maximization
problem (6). The dual problem in variables ⌅i = {µQ

i , Q

it , ⌫Q

i , µij , ⌫ij , �i} writes as

8i 2 I

8
>>>>>>>><

>>>>>>>>:

min
⌅i

P
j2Ji

(b>
ijµij + eij⌫ij) +

P
t2T

1

2
Q

it + �>
i hi

s.t. (B.10c) � (B.10e)���µQ

it

���
2

2
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it⌫
Q

it , 8t

kµijk2
 ⌫ij , 8j 2 Ji

Q

it � 0, ⌫Q

it � 0,

(B.12)

Using Lemmas 1 and 2 provided in the Proof of Theorem 1, existence of strictly feasible
primal-dual solutions to the participant’s profit maximization problem (6) and its dual (B.12)
is established (omitted from presentation, for the sake of brevity). Consequently, from The-
orem 1, strong duality holds for this primal-dual pair, thereby enforcing the primal problem
(6) and its dual (B.12) to attain identical objective function values at the optimal solution.
Condition (B.11) is equivalent to the non-negativity of the dual objective in (B.12) at the
optimal solution, which we now analyze in the following.

Observe that, the second term of the objective function of the dual problem (B.12) is non-
negative from the primal feasibility condition it � 0, 8i. The first term, enclosed in parenthe-
sis, is non-negative if eij � kbijk2

, 8j 2 Ji. This stems from the Cauchy-Schwarz Inequality,
i.e., we have

|b>
ijµij |  kbijk2

kµijk2
 kbijk2

⌫ij , 8j 2 Ji,

where the last inequality is due to the primal feasibility condition kµijk2
 ⌫ij , 8j 2 Ji. With

the condition eij � kbijk, 8j 2 Ji, we have |b>
ijµij |  eij⌫ij , 8j 2 Ji. Under the condition

eij � kbijk2
, eij⌫ij � 0 8j 2 Ji; therefore, the first term in the objective is bounded below

by 0. The variable �i is free, therefore the third term in the objective is guaranteed to be
non-negative if hi = 0. This completes the proof of cost recovery for the market participants
i 2 I under the conditions: (i) eij � kbijk2

, 8j 2 Ji, 8i and (ii) hi = 0, 8i.

32



(iii) Revenue adequacy: Mathematically, the market operator is revenue adequate if

X
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X

i2I
tr(⇧?

p
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W

?
ip)

| {z }
Term A

�
X

t2T
!?

t
>
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?
t

| {z }
Term B

� 0, (B.13)

where Term A refers to the net payments received from the i 2 I market participants for the
p 2 P commodities and Term B refers to the payments made to the network operator towards
transmission service. To reduce notational complexity, we drop the superscript ? denoting
optimal values in the proof that follows, yet they are always implied. Using (B.6), we expand
Term A and rearrange the summation operators to reflect the dependence of variables
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i2I
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X
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X
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.

(B.14)

Gathering the equalities (6e) representing the transaction quantities with the injections (or
withdrawals) for the I participants, we have W

>
ip1 = Gipqip, 8i. Since this equality holds

individually for each participant, we can add them for all participants to get
P

i2I 1>
Wip =P

i2I(Gipqip)>, such that

X

i2I
1>[Wip](:,t) =

X

i2I
[Gipqip]t = 0, 8t, (B.15)

where the second equality results from the market-clearing condition (8b) that holds at
optimality. Hence, the first term in (B.14) vanishes. The second term in (B.14) is non-zero
only if there is a congestion in the grid, i.e., any %t 6= 0 or %

t
6= 0. Next, we expand Term B

in (B.13), using the stationarity condition (B.8a) and the market-clearing condition (8a), as

�
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t yt =
X

t2T
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>(%t � %
t
)
⌘> X

p2P
[Qinj

p ](:,t) (B.16)

which is non-zero only if there is congestion in the network, i.e., the network operator earns
congestion rent. We remove the summation over the hours by using the expression for the
conic spatial prices given by Theorem 2 and the auxiliary variables defined therein, to rewrite
Term B of (B.13) as
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>
Q

inj
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⌘
. (B.17)

Similarly, using (B.15), we rewrite Term A of (B.13) after rearrangement as

X

p2P

X

i2I
tr(⇧p

>
Wip) = �
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. (B.18)
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Observe that
P

i2I Wip sums the transaction quantities over the nodes and periods for all
participants for a given commodity p, which is indeed equal to the commodity-specific net
nodal injections given by (9), i.e., Q

inj
p =

P
i2I Wip, 8p. Therefore, the terms in (B.17)

and (B.18) cancel each other out, thereby satisfying the revenue adequacy condition for the
market operator at the optimal solution. As a result, we have shown that there exists a
budget balance for the market operator under the proposed conic market framework, i.e., the
market-operator does not accrue any surplus revenue.
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Moving from Linear to Conic Markets for Electricity

Anubhav Ratha, Pierre Pinson, Hélène Le Cadre, Ana Virag, Jalal Kazempour

This document serves as an electronic companion (EC) for the paper “Moving from Linear to Conic Markets

for Electricity”. In §EC.1, we provide modeling examples that illustrate how second order cone (SOC)

constraints enable future electricity markets to be uncertainty-, asset- and network-aware. In §EC.2, we

present the market-clearing problems of the proposed SOCP-based uncertainty-aware electricity market as

well as the linear programming (LP) based market-clearing benchmarks. Numbered sections and equations

throughout the electronic companion correspond to those in the paper, while a prefix ‘EC.’ denotes these

elements within this document.

EC.1. Modeling Examples

This section demonstrates the versatility of SOC constraints in modeling the various asset- and

network-related nonlinearities faced by electricity markets. While Example EC.1 covers the general

case of including participants with quadratic costs in electricity markets, Example EC.2 discusses

the modeling of nonlinearities in the context of coordination between electricity and natural gas

system for harnessing flexibility. Lastly, Example EC.3 demonstrates the network-awareness of the

market framework proposed in the paper by showing how it can be extended to include the SOCP

relaxation of nonlinear and non-convex power flow equations.

Example EC.1 (Quadratic cost). Consider participant i having a quadratic cost (utility)

of production (consumption), such that the cost function at each hour t is given by cit(qit) =

q
>
itdiag(cQ

it)qit + c
L
it

>
qit, where c

Q
it 2RKi and c

L
it 2RKi denote the quadratic and linear cost coe�-

cients, respectively. Let C
Q
it 2RKi⇥Ki be defined as a factorization of the quadratic cost matrix such

that diag(cQ
it) = C

Q
it

>
C

Q
it. The existence of such a factorization is given since diag(cQ

it)< 0, 8t, 8i 2

I. The quadratic objective function of the participant i is equivalently written as

min
qit,zit

X

t2T

⇣
zit + c

L
it

>
qit

⌘
(EC.1a)

s.t.
��CQ

itqit

��2

2
 zit, 8t, (EC.1b)

where zit 2 R+ is an auxiliary variable, resulting in the linear objective function (EC.1a). The

rotated SOC constraint (EC.1b) is a special form of the general SOC constraint (1), see Mosek ApS

(2021). We illustrate this for single-period market-clearing, i.e., T = 1, assuming that participant

ec1
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i has Ki = 2 decisions variables, such that qi1 2R2. Extending the decision vector of participant i

to qi =
⇥
q

>
i1 zi1

⇤> 2 R3, we have the parameters Ai =
⇥
C

Q
it 02

⇤
, di =

⇥
0 0 1

⇤>
, while bi = 02

and ei = 0, resulting in a three-dimensional rotated SOC constraint, i.e., mi = 2.

Example EC.2 (Natural gas network). The interdependence between electricity and nat-

ural gas systems primarily arises due to the significant role played by gas-fired power plants in

providing flexibility to the electricity system facing uncertainty. Congestion in the gas network

during the real-time operation of the electricity system jeopardizes the fuel-availability for gas-fired

power plants and therefore, adversely impacting the flexibility provision (Byeon and Van Henten-

ryck 2020). One of the crucial operational constraints of the gas system is the relation between gas

flows and nodal pressures in the network. The steady-state flow of gas in the pipelines is repre-

sented by a non-convex quadratic equality constraint that relates the squared flow magnitude with

the di↵erence in squared pressures at the terminal nodes. A convex relaxation of this non-convex

equality takes the form of SOC constraints, as illustrated in the following.

Let ' 2R+ denote the flow of gas along a gas pipeline connecting two terminal nodes, the sending

node s and the receiving node r, each with nodal pressures denoted by ⇡s 2 R+ and ⇡r 2 R+,

respectively. As proposed by Borraz-Sánchez et al. (2016), the convex relaxation for the non-convex

equality between the flow along a pipeline and the pressures at the terminal nodes is expressed as

'2  �2 (⇡2
s � ⇡2

r), (EC.2)

where � 2R+ is a constant which encodes the friction coe�cient and geometry of pipelines. Ignoring

all other pipelines and considering the gas network operator as an electricity market participant,

we can denote its decision vector as qGN =
⇥
' ⇡r ⇡s

⇤>
and can represent the constraint (EC.2)

as a SOC constraint of the form (1) with parameters

A =


1
�

0 0
0 1 0

�
, b = 02 , d =

⇥
0 0 1

⇤>
and e = 0,

which is a three-dimensional SOC constraint, i.e., mi = 2. Similar SOC constraints are included for

other pipelines in the gas network and over various hours, therefore enabling the consideration of

gas network operational constraints within the electricity market-clearing problem.

Example EC.3 (Electricity network). Known as the branch flow model (Farivar and Low

2013), the SOCP relaxation of power flow equations is exact for the distribution networks that

exhibit a radial graph structure under mild conditions. The power flow equations model the non-

linear relation of active and reactive power transported along a line with the current and terminal

node voltages. While active power is the actual quantity in MWh of power produced or consumed,
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reactive power is a necessary component oscillating within the network and regulates voltage across

the nodes. Consider a power line ` = (n,n0) 2 L connecting adjacent nodes n,n0 2 N . Let sa
` 2R and

sr
` 2R denote the active power and reactive power; ✓` 2R+ and vn 2R+ denote the squared mag-

nitude of current flow in the line ` and the squared voltage magnitude at the node n, respectively.

The SOC relaxation for the power flow equations 8` = (n,n0) 2 L is

sa
`
2 + sr

`
2  ✓`vn (EC.3a)

sa
`
2 + sr

`
2  s`

2, (EC.3b)

where s` 2 R+ is a parameter denoting the rated power transfer capacity of line `. Constraints

(EC.3) can be reformulated as SOC constraints admitting the variables
⇥
sa

` sr
` ✓` vn

⇤>
. For

instance, (EC.3a) is equivalent to a SOC constraint of the general form (1) with the parameters

A =

2

4
2 0 0 0
0 2 0 0
0 0 1 � 1

3

5 , b = 03 , d =
⇥
0 0 1 1

⇤>
and e = 0,

which is a four-dimensional SOC constraint. Similarly, (EC.3b) is a three-dimensional SOC con-

straint with a structure similar that in Example EC.2.

EC.2. Market-clearing Problems

For the uncertainty-aware conic market framework proposed in the paper, we first outline the

participant models in §EC.2.1, followed by the chance-constrained market-clearing problem and

its reformulation as the SOCP problem Mcc in §EC.2.2. In §EC.2.3 we provide formulations for

the two LP-based uncertainty-aware benchmark market-clearing problems, R1 and R2. Finally,

§EC.2.4 formulates the real-time market-clearing problem entailed in the out-of-sample simulation

studies discussed in §4.

EC.2.1. Modeling of Market Participants

To enhance the clarity of exposition, we define subsets of market participants I comprised of

flexible power producers F ✓ I, energy storage owners S ✓ I and inflexible consumers D ✓ I.

Let the uncertainty faced by the market-clearing problem arise from a set of weather-dependent

renewable power producers W ✓ I, such that F [ S [ D [ W = I and F \ S \ D \ W = ;. We

consider consumers to be inflexible. However, the methodology adopted in this paper is extendable

to include demand-side flexibility providers.

Weather-dependent power producers: At the day-ahead stage, the stochastic power pro-

duction q̃it 2R from weather-dependent power producers i 2 W = {1,2, . . . ,W} are modeled as

q̃it(⇠t) = q̂it � ⇠it, 8i 2 W,8t, (EC.4)
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where q̂it 2R is the nominal production, usually in the form of the best-available day-ahead fore-

cast, while the random variable ⇠it 2R is the forecast error encountered by producer i at hour t. The

stochastic power production q̃it has an upper bound given by the rated power production capacity

Qi, while being bounded below by Q
i
= 0. The vector ⇠ =

⇥
⇠11 ⇠21 . . . ⇠Wt . . . ⇠WT

⇤> 2RWT

denotes the overall uncertainty faced by the market-clearing problem, formed by extending ⇠t 2RW ,

as defined in Example 1, to a multi-period setting. We assume that ⇠ follows an unknown multi-

variate probability distribution P⇠, characterized by mean µ 2RWT and covariance ⌃ 2RWT⇥WT ,

which are estimated by the system operator having an access to a finite number of historical mea-

surement samples. Without much loss of generality, we assume the distribution P⇠ to have a mean

µ = 0, as any non-zero elements of the sample mean are used to update the forecast q̂it in (EC.4).

The structure of ⌃ is such that its diagonal blocks, comprised of sub-matrices, ⌃t 2 RW⇥W , 8t,

capture the spatial correlation among the forecast errors at hour t, while the o↵-diagonal blocks

contain information about spatio-temporal correlation of uncertainty. The net deviation from the

day-ahead forecasts realized during real-time operation at hour t is thus given by 1>⇠t 2 R. As

a sign convention, 1>⇠t > 0 implies a deficit of production from renewable energy sources during

real-time operation stage as compared to the day-ahead forecast. Weather-dependent power pro-

ducers are associated with a decision vector qit =
⇥
q̂it ⇠it

⇤>
, 8t, 8i 2 W such that participation

in the two commodities traded in the market is determined as follows. For the commodity energy,

i.e., p = 1, the contribution is given by

qip =
⇥
q̂i1 q̂i2 . . . q̂i(T�1) q̂iT

⇤>
, Gip = diag(1), 8i 2 W,

where 1 2 RT . For p = 2, i.e., flexibility, the weather-dependent power producers are modeled as

the uncertainty sources

qip = 1, Gip = �

2

64
1>⇠1 · · · 0

...
. . .

...
0 · · · 1>⇠T

3

75 , 8i 2 W,

where 12RT and the negative sign arises from the convention adopted in (EC.4).

Flexible power producers: For each flexible power producer i 2 F , we model the stochastic

power production during real-time operation at hour t as

q̃it(⇠t) = q̂it + hit(⇠t) , 8i 2 F , 8t, (EC.5)

where q̂it denotes the nominal production and the function hit(⇠t) : RW 7! R is the adjustment

policy allocated to the market participant i, encoding its share in the recourse actions needed to

mitigate the net deviation in the electricity system arising from forecast errors realized at hour t.
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Typically, these adjustment policies hit(⇠t) represent convex decision rules, which may be linear

(Georghiou et al. 2019) or generalized (Georghiou et al. 2015). In this work, we adopt adjustment

policies a�nely dependent on the total uncertainty faced by the system operator, such that

hit(⇠t) = 1>⇠t↵it , 8i 2 F , 8t,

where ↵it is the adjustment policy allocated to participant i at hour t. The nominal production

quantity q̂it and the policy ↵it are optimally decided by the day-ahead market-clearing program.

Recalling Example 1, we write chance constraints limiting the production from participants to their

uppers limit Qi as

P⇠

⇣
q̂it + 1>⇠t↵it  Qi

⌘
� (1� "̂), 8t, 8i 2 F , (EC.6a)

which is reformulated as a W + 1-dimensional SOC constraint

r"̂kXt1↵itk2  Qi � q̂it, 8t, 8i 2 F , (EC.6b)

where Xt 2 RW⇥W is obtained by Cholesky decomposition of the submatrix ⌃t of the covariance

matrix ⌃ such that ⌃t = XtX
>
t . Recall that the parameter r"̂ is a safety parameter, related to

constraint violations, chosen by the system operator based on the knowledge of distribution P⇠,

such that r"̂ increases as "̂ decreases. Similar reformulation is obtained for the lower bounds on the

production, Q
i
. Apart from the production bounds, a flexible power producer may have capacity

bounds on the flexibility provision, denoted by QR

i
, Q

R

i , which are reformulated in a similar manner.

Lastly, inter-temporal constraints such as the limits on the downward and upward ramping rates

�i, �i 2R are modeled as

P⇠

⇣
(q̂it + 1>⇠t↵it) � (q̂i(t�1) + 1>⇠t�1↵i(t�1)) � ��i

⌘
� (1� "̂), 8t > 2, 8i 2 F (EC.7a)

P⇠

⇣
(q̂it + 1>⇠t↵it) � (q̂i(t�1) + 1>⇠t�1↵i(t�1))  �i

⌘
� (1� "̂), 8t > 2, 8i 2 F (EC.7b)

and reformulated as 2W + 1-dimensional SOC constraints of the form

r"̂

���Xt�1:t

⇥
1>↵i(t�1) �1>↵it

⇤>
���

2
 �i � (q̂it�1 � q̂it), 8t > 2, 8i 2 F (EC.7c)

r"̂

���Xt�1:t

⇥
�1>↵i(t�1) 1>↵it

⇤>
���

2
 �i + (q̂it�1 � q̂it), 8t > 2, 8i 2 F , (EC.7d)

where Xt�1:t 2 R2W⇥2W denotes the factorization of the blocks of covariance matrix ⌃ corre-

sponding to the spatio-temporal covariance of forecast errors in two consecutive hours. Flexible

power producers participate in the conic market with decision vectors qit =
⇥
q̂it ↵it

⇤>
,8t, 8i 2 F .

Towards the commodity energy, i.e., p = 1, flexible generators contribute as

qip =
⇥
q̂i1 q̂i2 . . . q̂i(T�1) q̂iT

⇤>
, Gip = diag(1), 8i 2 F ,
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1 2 t T
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E0
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q̃it

Eit

Ei

Ei

Figure EC.1 Illustration of the operation of an energy storage unit for flexibility provision.

with 12RT . For the commodity flexibility (p = 2), the contribution is given by

qip =
⇥
↵i1 ↵i2 . . . ↵i(T�1) ↵iT

⇤>
, Gip =

2

64
1>⇠1 · · · 0

...
. . .

...
0 · · · 1>⇠T

3

75 , 8i 2 F .

Energy storage operators: For each energy storage unit s 2 S, the power produced or con-

sumed during real-time operation at hour t is given by

q̃it(⇠t) = q̂it + 1>⇠t�it , 8i 2 S, 8t, (EC.8)

where q̂it is the nominal production/consumption and �it is the a�ne adjustment policy allocated.

We adopt the sign convention q̃it(⇠t) > 0 for hours when the storage is discharging (production),

while q̃it(⇠t) < 0 indicates charging (consumption). In practice, energy storage units are limited by

their charging and discharging capacities which are modeled using chance constraints as

P⇠

⇣
q̂it + 1>⇠t�it  ⌘D

i Q
D

i

⌘
� (1� "̂), 8t, 8i 2 S (EC.9a)

P⇠

⇣
q̂it + 1>⇠t�it � � 1

⌘C
i

Q
C

i

⌘
� (1� "̂), 8t, 8i 2 S (EC.9b)

and are reformulated as W + 1-dimensional SOC constraints as

r"̂kXt1�itk2  ⌘D
i Q

D

i � q̂it, 8t, 8i 2 S (EC.9c)

r"̂kXt1�itk2  1

⌘C
i

Q
C

i + q̂it, 8t, 8i 2 S, (EC.9d)

where ⌘D
i ,⌘C

i 2 [0,1] are energy conversion factors representing discharging and charging e�cien-

cies, while Q
D

i , Q
C

i 2R are, respectively, the maximum discharging and charging capacities of the

energy storage unit i 2 S. Inter-temporal constraints are critical for energy storage units to ensure

that (i) the storage operation trajectory remains within the limits of state of charge, and (ii) the
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storage unit is neither depleted nor over-charged at the end of market-clearing horizon. While the

former ensures safe operation of the storage unit within its operational limits, the latter is relevant

in a market-clearing setup where the storage unit is expected to provide flexibility to the grid on

an ongoing basis. Figure EC.1 shows the trajectory (in red) of energy content of a storage unit. At

each hour, the changes to energy content due to production (discharging) or consumption (charg-

ing) by the storage unit is given by q̃it(⇠t), with the rate of change being limited by the charging

and discharging power limits in (EC.9). The energy content of a storage unit evolves as

P⇠

⇣
E0

i �
tX

t0=1

(q̂it0 + 1>⇠t�it0)  Ei

⌘
� (1� "̂), 8t, 8i 2 S (EC.10a)

P⇠

⇣
E0

i �
tX

t0=1

(q̂it0 + 1>⇠t�it0) � Ei

⌘
� (1� "̂), 8t, 8i 2 S, (EC.10b)

which are reformulated as W ⇥ t+ 1, 8t-dimensional SOC constraints, expressed as

r"̂

���X1:t

⇥
1>�i1 1>�i2 · · · 1>�it

⇤>
���

2
 Ei � E0

i +
tX

t0=1

q̂it0 , 8t, 8i 2 S (EC.10c)

r"̂

���X1:t

⇥
1>�i1 1>�i2 · · · 1>�it

⇤>
���

2
 E0

i � Ei �
tX

t0=1

q̂it0 , 8t, 8i 2 S, (EC.10d)

where E0
i 2 R is the energy content at t = 0 and Ei, Ei 2 R are the minimum and maximum

energy storage capacity of the storage unit, respectively, such that E0
i 2 [Ei, Ei]. Furthermore, to

ensure the ongoing market-participation of the storage unit, we utilize the concept of end-of-horizon

energy neutrality. We define lower and upper bounds, Bi, Bi 2 R respectively, around the initial

energy stored E0
i to reflect the preference of the energy storage owner on the energy content at the

end of market-clearing horizon, see Figure EC.1. This ensures the end-of-horizon energy content

to be within [E0
i � Bi, E0

i + Bi]. These preferences are captured through chance constraints

P⇠

⇣
E0

i �
TX

t0=1

(q̂it0 + 1>⇠t�it0)  E0
i + Bi

⌘
� (1� "̂), 8i 2 S (EC.11a)

P⇠

⇣
E0

i �
TX

t0=1

(q̂it0 + 1>⇠t�it0) � E0
i � Bi

⌘
� (1� "̂), 8i 2 S (EC.11b)

which are reformulated as W ⇥ T + 1-dimensional SOC constraints, expressed as

r"̂

���X1:T

⇥
1>�i1 1>�i2 · · · 1>�iT

⇤>
���

2
 Bi +

TX

t0=1

q̂it0 , 8i 2 S (EC.11c)

r"̂

���X1:T

⇥
1>�i1 1>�i2 · · · 1>�iT

⇤>
���

2
 Bi �

TX

t0=1

q̂it0 , 8i 2 S. (EC.11d)
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Each energy storage operators participates in the conic market with a decision vector qit =
⇥
q̂it �it

⇤>
,8t, 8i 2 S. Likewise, towards the commodity energy, i.e., p = 1, we have

qip =
⇥
q̂i1 q̂i2 . . . q̂i(T�1) q̂iT

⇤>
, Gip = diag(1), 8i 2 S,

with 12RT . For the commodity flexibility (p = 2), the storage unit contributes to the trades as

qip =
⇥
�i1 �i2 . . . �i(T�1) �iT

⇤>
, Gip =

2

64
1>⇠1 · · · 0

...
. . .

...
0 · · · 1>⇠T

3

75 ,8i 2 S.

Inflexible consumers: For each inflexible consumer d 2 D, the power consumed during real-

time operation at hour t is given by q̃it(⇠t) = q̂it, 8i 2 D, 8t, where q̂it 2 R� is the power demand

by consumer d 2 D. The above modeling can be extended to include flexible consumers that may

respond to the uncertainty by reducing/increasing their consumption based on an a�ne adjustment

policy, similar to flexible generators and energy storage units. However, for clarity of exposition, this

paper is restricted to modeling inflexible and perfectly inelastic demand. Each consumer contributes

towards the trades of commodity energy, i.e., for p = 1, as

qip =
⇥
q̂i1 q̂i2 . . . q̂i(T�1) q̂iT

⇤>
, Gip = diag(1), 8i 2 D,

where 12RT . Lastly, for p = 2, considering inflexible consumers, we have qip = 0, Gip = 0, 8i 2 D.

EC.2.2. Chance-constrained Market Clearing

In the following, we formulate the chance-constrained market-clearing problem in stochastic opti-

mization variables q̃it(⇠t), 8i 2 I which are functions of the random variable ⇠t. We drop this

dependency for notational convenience, yet it is always implied.

min
q̃it

EP⇠

h X

i2I\D

X

t2T

⇣
cQ

it q̃
2
it + cL

itq̃it

⌘i
(EC.12a)

s.t. P⇠

X

i2I

Gipq̃ip = 0T , 8p 2 P,
�

a.s.
= 1, (EC.12b)
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2
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Q
i
 q̃it  Qi, 8t, 8i 2 F [ W

� QR

i
 hit(⇠t)  Q

R

i , 8i 2 F

� �i  q̃it � q̃i(t�1)  �i, 8t > 2, 8i 2 F

� 1

⌘C
i

Q
C

i  q̃it  ⌘D
i Q

D

i , 8t, 8i 2 S

Ei  E0
i �

tX

t0=1

q̃it0  Ei, 8t, 8i 2 S

E0
i � Bi  E0

i �
TX

t0=1

q̃it0  E0
i + Bi, 8i 2 S

� s` 
X

n2N

[ ](`,n)

 
X

i2In

X

p2P

[Gipq̃ip]t

!
 s`, 8t, 8` 2 L

3

7777777777777777777777775

� 1� ", (EC.12c)
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where the objective function (EC.12a) minimizes the expected cost, which is equivalent to mini-

mizing negative social welfare when facing an inflexible and perfectly inelastic demand. The almost

sure (a. s.) constraint (EC.12b) ensures the satisfaction of the supply-demand balance constraint

for both commodities with a probability of 1, whereas the chance constraint (EC.12c) ensures the

inequalities are jointly met with a probability of (1�"). The prescribed constraint violation proba-

bility " 2 (0,1) reflects risk tolerance of the system operator towards the violation of technical limits

of the system and in our numerical studies discussed in §4, we set " = 0.05. The chance-constrained

market-clearing problem (EC.12) is computationally intractable since it involves infinitely many

constraints arising from the uncertain production from weather-dependent power producers. We

gain tractability by expressing the stochastic variables q̃it, 8i, 8t as a�ne, finite-dimensional func-

tions of the random variable ⇠ as discussed in the previous section, resulting in an approximate

solution to the infinite-dimensional problem. In the following, we discuss the reformulations to

reach the final tractable SOCP-based chance-constrained market-clearing problem.

Reformulation of joint chance constraint: Observe that (EC.12c) models a joint violation

of the constraints, in contrast to the individual chance constraints discussed so far. In this paper,

following the Bonferroni approximation of joint chance constraints (Xie et al. 2019), we adopt a

consideration of individual chance constraints with the analytical parameterization of risk. Let

N ineq denote the number of individual inequalities forming the joint chance constraint (EC.12c),

such that "̂ 2RN ineq

+ collects all the individual violation probabilities for the inequality constraints.

The Bonferroni reformulation of joint chance constraint mandates that the individual constraint

violation probabilities be chosen such that 1>"̂  ". Furthermore, this approach provides a joint

constraint feasibility guarantee even if the choice of individual probabilities is done trivially, e.g., "̂

is chosen such that "̂k = "
N ineq , 8k = 1,2, . . . ,N ineq. We compute the individual constraint violation

probabilities in this manner and adopt the SOC reformulation techniques for individual chance

constraints discussed so far.

Reformulation of almost sure constraint: The almost sure constraint (EC.12b) must be held

at the optimal solution to (EC.12) with a probability of 1. Considering the a�ne dependency of the

stochastic decision variables q̃it, 8i, 8t with respect to the random variables ⇠t, this amounts to a

separation of (EC.12b) into nominal and recourse equalities. Corresponding to the two commodities

energy and flexibility, these equalities are given by

X

i2I

Gipqip = 0, p = 1 (EC.13a)

X

i2I\(W[D)

diag(1)qip = 1, p = 2. (EC.13b)
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Power flow limits: Apart from the participant-specific chance constraints discussed so far, the

constraints limiting the power flows in the network are

P⇠

hX

n2N

[ ](`,n)

 
X

i2In

X

p2P

[Gipq̃ip]t

!
 s`

i
� 1� "̂, 8t, 8` 2 L (EC.14a)
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hX

n2N

[ ](`,n)

 
X

i2In

X

p2P

[Gipq̃ip]t

!
� �s`

i
� 1� "̂, 8t, 8` 2 L, (EC.14b)

which require tractable reformulations. In the following, we illustrate the reformulation of (EC.14a)

as an SOC constraint and adopt a similar approach for the other flow direction. First, we rewrite

(EC.14a) such that nominal and uncertainty-dependent terms are separable. To that end, we

define auxiliary network matrices  F 2RN⇥|F|,  S 2RN⇥|S|,  W 2RN⇥W and  D 2RN⇥|D| which

map the flexible power producers, energy storage units, weather-dependent power producers and

consumers, respectively, to the electricity network nodes. We collect all commodity contributions

by participant groups at a given hour by defining auxiliary variables q̃
F
t , q̂

F
t , ↵t 2 R|F| to denote

the stochastic production, nominal production and the adjustment policies for the flexible power

producers, q̃
S
t , q̂

S
t , �t 2 R|S| to denote stochastic production, nominal production and adjustment

policies for the storage units, q̂
W
t 2 RW for the forecasted production from weather-dependent

power producers and lastly, q̂
D
t 2 R|D| for the inflexible demand from consumers. With that, we

rewrite (EC.14a) as

P⇠

h
[ ( F

q̃
F
t + S

q̃
S
t + W (q̃W

t � ⇠t) + D
q̂

D
t )]`  s`

i
� 1� "̂, 8t, 8` 2 L, (EC.15)

which we then reformulate as an SOC constraint after separating the nominal and uncertainty-

dependent terms. The final SOC reformulation for (EC.14a) results in 8t, 8` 2 L,

r"̂

��Xt[ ( F ↵t1
> + S�t1

> � W )]>(`,:)
��

2
 s` � [ ( F

q̂
F
t + S

q̂
S
t + W

q̂
W
t + D

q̂
D
t )]` .
(EC.16)

Objective function reformulation: We decompose the objective (EC.12a) among the various

participants and expand the stochastic term to its nominal and recourse values to obtain

EP⇠

hX

i2F

X

t2T

⇣
cQ

it(q̂it + 1>⇠t↵it)
2 + cL

it(q̂it + 1>⇠t↵it)
⌘

| {z }
Term A

+
X

i2S

X

t2T

⇣
cQ

it(q̂it + 1>⇠t�it)
2 + cL

it(q̂it + 1>⇠t�it)
⌘

| {z }
Term B

+
X

i2W

X

t2T

⇣
cQ

it(q̂it � ⇠it)
2 + cL

it(q̂it � ⇠it)
⌘

| {z }
Term C

i
.

Linearity of the expectation operator allows us to separate the cost terms and we rewrite the cost

of flexible generators, i.e., Term A as

X

i2F

X

t2T

⇣
cQ

it q̂
2
it + cQ

it E
P⇠ [(1>⇠t)

2]↵2
it + 2q̂itc

Q
it E

P⇠ [1>⇠t]↵it + cL
itq̂it + cL

it E
P⇠ [1>⇠t]↵it

⌘
.
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The zero-mean assumption made on ⇠t factors out the terms last two terms under the expectation

operator. As discussed in Bienstock et al. (2014), the first term under expectation operator can

be reformulated as the variance of ⇠t, i.e., EP⇠ [(1>⇠t)2] = var(1>⇠t) = 1>
⌃t1, where ⌃t is the

covariance matrix as previously discussed. Therefore, the Term A reduces to

X

i2F

X

t2T

⇣
cQ

it q̂
2
it + cQ

it 1
>
⌃t1↵

2
it + cL

itq̂it

⌘
.

Lastly, following Example EC.1, we reformulate the quadratic cost terms as a rotated SOC con-

straint in the interest of analytical and computational appeal. Introducing variables zq̂
it 2 R and

z↵
it 2R, for any fixed values of q̂it and ↵it, Term A of the objective function retrieves the expected

cost by solving the following SOCP problem

min
zq̂
it,z

↵
it

X

i2F

X

t2T

⇣
zq̂

it + z↵
it + cL

itq̂it

⌘
(EC.17a)

s.t.
���(cQ

it)
1
2 q̂it

���
2

2
 zq̂

it, 8t, 8i 2 F (EC.17b)
���Xt1(c

Q
it)

1
2 ↵it

���
2

2
 z↵

it, 8t, 8i 2 F . (EC.17c)

Term B of the objective function characterizing the cost of operation of energy storage units follows

a similar reformulation. For the set of wind power producers, i.e., the cost in Term C, we use the

following equivalence to eliminate the expectation operator

X

i2W

X

t2T

⇣
cQ

it q̂
2
it + cQ

it E
P⇠ [⇠2

it] + cL
itq̂it

⌘
,

X

i2W

X

t2T

⇣
cQ

it q̂
2
it + cQ

it tr[⌃t] + cL
itq̂it

⌘
.

The quadratic term in the expression is then reformulated as a rotated SOC constraint as before.

The term cQ
ittr[⌃t] is a cost term that is constant, depending on the historical forecast error samples.

Adopting the reformulations of the objective function and the chance constraints, we obtain the

final tractable chance-constrained market-clearing problem Mcc. Solved centrally by the system

operator, the problem Mcc is an SOCP problem that results in optimal market-clearing quantities

and prices for both the commodities traded in the market, i.e., energy and flexibility.

min
Vopt,Vaux

X

i2I\D

X

t2T

⇣
zq̂it

it + cL
itq̂it

⌘
+

X

i2F

X

t2T

z↵
it +

X

i2S

X

t2T

z�
it +

X

i2W

X

t2T

cQ
ittr[⌃t] (EC.18a)

s.t.
���(cQ

it)
1
2 q̂it

���
2

2
 zq̂

it, 8t, 8i 2 I \ D (EC.18b)
���Xt1(c

Q
it)

1
2 ↵it

���
2

2
 z↵

it, 8t, 8i 2 F (EC.18c)
���Xt1(c

Q
it)

1
2 �it

���
2

2
 z�

it, 8t, 8i 2 S (EC.18d)

r"̂kXt1↵itk2  Qi � q̂it, 8t, 8i 2 F (EC.18e)

r"̂kXt1↵itk2  q̂it � Q
i
, 8t, 8i 2 F (EC.18f)
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r"̂kXt1↵itk2  Q
R

i , 8t, 8i 2 F (EC.18g)

r"̂kXt1↵itk2  QR

i
, 8t, 8i 2 F (EC.18h)

r"̂

���Xt�1:t

⇥
�1>↵i(t�1)l 1>↵it

⇤>
���

2
 �i + (q̂it�1 � q̂it), 8t > 2, 8i 2 F (EC.18i)
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2
 �i � (q̂it�1 � q̂it), 8t > 2, 8i 2 F (EC.18j)

r"̂kXt1�itk2  ⌘D
i Q

D

i � q̂it, 8t, 8i 2 S (EC.18k)

r"̂kXt1�itk2  1

⌘C
i

Q
C

i + q̂it, 8t, 8i 2 S (EC.18l)
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TX
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Gipqip = 0, p = 1 (EC.18q)

X

i2I\(W[D)

diag(1)qip = 1, p = 2 (EC.18r)
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F
t + S
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S
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t + D
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D
t )]`, 8t, 8` 2 L, (EC.18t)

where the set of optimization variables is Vopt = {q̂it, z
q̂it
it ,↵it, z

↵̂it
it ,�it, z

�̂it
it } and the set of auxiliary

variables is Vaux = {qip, q̂F
t ,↵t, q̂S

t ,�t, q̂W
t , q̂D

t }, formed as previously discussed.

EC.2.3. LP-based market-clearing benchmarks

In the following, we concisely formulate the two reference uncertainty-aware benchmarks within

the LP framework. To account for the quadratic costs of market participants in an LP problem,

we perform a piecewise linear approximation of the cost by discretizing the production quantities

into a set of bins given by Y = {1,2, . . . , Y }.

Deterministic two-stage market framework: In the deterministic market-clearing prob-

lem R1, the system operator procures energy and flexibility (in the form of reserve capacity) in

the day-ahead market. Thereafter, during real-time operation stage, via another market-clearing

mechanism, the reserves are activated based on the allocation capacity bounds cleared during the
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day-ahead market. This two-stage deterministic market-clearing problem is a natural uncertainty-

aware extension of currently-operational electricity markets.

Day-ahead market-clearing problem R1a:

min
qDA
ity ,qR

it

X

i2I\D

X

t2T

X

y2Y

⇣
cY

ityq
DA
ity
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itq
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Y
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where the parameter MR is the exogenously-determined minimum reserve requirement set by the

system operator. Next, closer to real-time the following flexibility activation problem is solved for

each uncertainty realization, denoted by b⇠.

Real-time flexibility activation problem, R1b, 8 b⇠:

min
qRT
ity
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0  qRT
ity  q̂it � b⇠it
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where (qDA
ity

?
, qR

it
?
) = argmin R1a are day-ahead dispatch and reserve capacity, respectively.

Scenario-based market framework: The scenario-based stochastic market-clearing problem

R2 is a two-stage problem. The first stage involves the day-ahead schedules as a result of the so-

called here-and-now decisions, whereas the second stage adjusts the day-ahead schedules with real-

time adjustments to mitigate the uncertainty from weather-dependent power producers (wait-and-

see). The adjustment decisions for real-time stage are already included in the day-ahead market-

clearing problem by considering a finite number of uncertainty realization scenarios, anticipating

that the actual power production is captured in the scenarios considered. Like with R1, we adopt

a linear approximation of the quadratic costs to remain within the LP framework. In the following,

we provide a concise formulation for this benchmark.
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EC.2.4. Out-of-sample simulations

Out-of-sample simulations are performed to evaluate the quality of the day-ahead market-clearing

outcomes by fixing the decisions obtained at the day-ahead stage to their optimal values and solving

a real-time flexibility activation problem. For the proposed conic market framework, the out-of-

sample problem (EC.22) formulated in the following admits fixed day-ahead decisions (qit
?,↵?

it,�
?
it)

obtained from the solution to Mcc. For the LP-based benchmark problems, we use qit
? =

P
y2Y qDA

ity
?

from the solution to R1a for the deterministic benchmark problem and qit
? =

P
y2Y qDA

ity
?

from the

solution to R2 for the scenario-based stochastic benchmark problem. We have, 8b⇠ :

min
qRT
it

X

i2I\(D[W)

X

t2T

⇣
cQ

it(q
?
it + qRT

it )2 + cL
it(q

?
it + qRT

it )
⌘

+
X

i2W

cspillqRT
it +

X

i2D

cshedqRT
it (EC.22a)

s.t. Q
i
 qit

? + qRT
it  Qi, 8t, 8i 2 F (EC.22b)

� �i  qit
? + qRT

it  �i, 8t > 1, 8i 2 F (EC.22c)

� 1

⌘C
Q

C

i  qit
? + qRT

it  ⌘DQ
D

i , 8t, 8i 2 S (EC.22d)

Ei  E0
i � (

tX

t0=1

qit0
? + qRT

it0 )  Ei, 8t, 8i 2 S (EC.22e)

E0
i � Bi  E0

i � (
tX

t0=1

qit0
? + qRT

it0 )  E0
i + Bi, 8i 2 S (EC.22f)

0  qRT
it  q̂it � b⇠it, 8t, 8i 2 W (EC.22g)

� q̂it  qRT
it  0, 8t, 8i 2 D (EC.22h)

� QR

i
 qRT

it  Q
R

i , 8t, 8i 2 F [ S (EC.22i)
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X

i2I\W

qRT
it = 1>b⇠t +

X

i2W

qRT
it , 8t (EC.22j)

� s` 
X

n2N

[ ](`,n)

 
X

i2In

qit
? + qRT

it

!
 s`, 8t, 8` 2 L (EC.22k)

For Mcc, these additional constraints restrict the real-time adjustments:

qRT
it = 1>b⇠t↵

?
it, 8t, 8i 2 F ; qRT

it = 1>b⇠t�
?
it, 8t, 8i 2 S. (EC.22l)
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Exploring Market Properties of Policy-based Reserve Procurement for
Power Systems

Anubhav Ratha, Jalal Kazempour, Ana Virag and Pierre Pinson

Abstract— This paper proposes a market mechanism for
co-optimization of energy and reserve procurement in day-
ahead electricity markets with high shares of renewable energy.
The single-stage chance-constrained day-ahead market clearing
problem takes uncertain wind in-feed into account, resulting in
optimal day-ahead dispatch schedule and an affine participation
policy for generators for the real-time reserve provision. Under
certain assumptions, the chance-constrained market clearing is
reformulated as a convex quadratic program. Using tools from
equilibrium modeling and variational inequalities, we explore
the existence and uniqueness of a Nash equilibrium. Under the
assumption of perfect competition in the market, we evaluate
the satisfaction of desirable market properties, namely cost
recovery, revenue adequacy, market efficiency, and incentive
compatibility. To illustrate the effectiveness of the proposed
market clearing, it is benchmarked against a deterministic co-
optimization of energy and reserve procurement. Biased and
unbiased out-of-sample simulation results for a power systems
test case highlight that the proposed market clearing results
in lower expected system operations cost than the deterministic
benchmark, without the loss of any desirable market properties.

I. INTRODUCTION

Real-time balancing between supply and demand of elec-
tricity is challenging for the operation of power systems with
high shares of intermittent renewable energy sources such
as wind energy. Operational reserves for power systems are
services traded in the market, in addition to energy, which
ensure that deviations of actual wind power production from
its day-ahead forecasts can be mitigated during real-time
operation. Technical challenges aside, electricity markets
also need to evolve such that cost-efficient market-based
procurement and activation of reserves can be achieved.

Market-based procurement of reserves has been a topic of
great interest in recent years, see [1], [2]. In current practice,
illustrated in Figure 1a, the Market Operator (MO) estimates
a system-wide parameter, Minimum Reserve Requirement
(MRR) which is the minimum reserve capacity that must be
procured to ensure a secure and efficient real-time balancing.
Derived either from empirical studies or through probabilistic
analysis of uncertainty [3], the MRR is then allocated among
available flexible generators in a reserve capacity scheduling
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capacity allocation
MRR-based reserves

Energy market clearing (Real-time markets)
Energy redispatch

Day: (D�1) Day: D

1 t

Hours
24

(a) Prevalent sequential reserve and energy procurement
Uncertainty-aware energy
and reserve co-optimization (Real-time markets)

Energy redispatch

Day: (D�1) Day: D

1 t

Hours
24

(b) State-of-the-art stochastic market clearing
Uncertainty-aware energy
and reserve co-optimization
+ Affine policy-based recourse

No energy redispatch

Day: (D�1) Day: D

1
Hours

24

(c) Proposed chance-constrained policy-based reserves

Fig. 1: Comparison of market clearing mechanisms for
energy and reserve. Each ( ) represents a market clearing.

market prior to the day-ahead market clearing1. Finally,
energy redispatch cost arises due to real-time markets that are
necessary to activate the reserve energy from flexible gener-
ators to exactly meet the deviations. Faced with the situation
to integrate an increasing amount of intermittent generation,
over-estimation of MRR and thereby over-dimensioning of
reserves has become a practice that increases the cost of
operating power systems.

With the strong coupling that exists between the supply of
energy and provision of reserves, recent studies have argued
for co-optimization of energy and reserves in day-ahead mar-
kets [5], shown in Figure 1b. Primarily, two research streams
have shaped this discussion. The first adopts scenario-based
stochastic programming methods, for example in [6] and
[7], to select reserves in the day-ahead stage such that the
cost of activated reserves during real-time is optimal for the

1This practice is followed by several European electricity markets (except
a few markets such as the Italian electricity market) [4]. Markets in the
US follow a deterministic co-optimization to procure energy and reserves,
similar to the benchmark discussed in Case Study (Section IV).



expected realization of uncertainty and feasible for all the
scenarios in the sample set considered. A very large number
of scenarios is required to represent the uncertainty well and
to ensure good out-of-sample performance, at the cost of
higher computational need. The other research stream uses
robust optimization techniques, such as in [8], [9] and [10],
to allocate and operate reserves such that the cost of system
operation is optimal with respect to the worst-case outcome
and is feasible for any outcome of uncertainty within a
parameterized uncertainty set. A market for reserves based on
control policies was first proposed in [8], built upon a robust
optimization model. While introducing computational ease,
this approach by design results in a conservative solution and
relies on meticulous study of uncertainty sets. Despite the
new market direction introduced by [8], the market properties
and pricing scheme were not elaborated upon.

In this paper, inspired by the control policy-based reserves
discussed in [8], we propose a market clearing mechanism
based on chance-constrained programming that co-optimizes
energy and reserves at the day-ahead stage, as shown in
Figure 1c. Chance-constrained programming, as highlighted
in [11], provides a practical approach addressing drawbacks
of the aforementioned techniques. Although it necessitates an
additional step of convexification of chance constraints (see
[12], [13]), it exhibits good out-of-sample performance and
adjustable conservativeness at low computational cost. Based
on the effectiveness of linear decision rules in decision-
making under uncertainty, as examined in [14], we select
an affine reserve policy such that participation in reserve
activation during real-time operation stage is a linear function
of the total balancing need. In addition to the optimal dimen-
sioning of reserves, policy-based procurement of reserves
has the advantage of resulting in efficient pricing for the
reserve services while removing the requirement of real-
time markets for reserve activation and associated energy
redispatch cost. Under the assumption of perfect competition,
aided by a study of Nash equilibria using tools from varia-
tional inequalities [15] in our proposed market clearing, we
explore the existence and uniqueness of market equilibrium
and the satisfaction of desirable market properties, namely
cost recovery for agents, revenue adequacy for the MO,
market efficiency and incentive compatibility [16].

We follow the analytical convexification of probabilistic
chance constraints, introduced in [11], which results in a
conic programming problem. Further, we use the direction
suggested in [17] to simplify the conic constraints to linear
formulations. In a case study built around a power system
with a high share of installed wind power capacity and
using biased and unbiased out-of-sample simulations, we
benchmark the proposed market clearing method against
a deterministic power and reserve co-optimization. This
enables us to quantify the reduction in expected total system
operations cost by the adoption of our proposed market
clearing, under adverse realizations of uncertainty.

The paper is organized as follows: section II presents
the proposed co-optimization of energy and reserves, stating
the underlying assumptions and discussing its mathemati-

cal interpretations as an equilibrium problem and a non-
cooperative game. Section III evaluates the satisfaction of
market properties, while results of the numerical case study
are presented and discussed in section IV. Finally, conclu-
sions and future work are discussed in section V.

II. PROBLEM FORMULATION
The following considers a single-node power system com-

prising of a set of flexible generators, g 2 G, a set of wind
farms, k 2 K, and an inflexible aggregated load, D.

A. Preliminaries

It is assumed that perfect competition exists in the market,
such that no market participant exhibits strategic behavior.
The wind farms are assumed to have zero marginal cost
of production and excess wind spillage is considered free.
Further, uncertainty in the form of wind forecast errors is
considered to be the only source of uncertainty in the system.
To avoid non-convexities introduced by the commitment
status of generators, it is assumed that only scheduled
generators participate in the day-ahead market clearing. The
value of lost load as well as the price caps for the day-ahead
market prices is considered to be e500/MWh.

B. Modeling of Uncertainty

In the day-ahead market clearing stage, forecast errors
in power production from the wind farm k are modeled to
follow a zero-mean Normal distribution, N(0,sk) centered
around the best available point forecast, Ŵk. The value of sk

should be estimated from historical forecast errors for each
wind farm location and time of the day.

Assumption 1: The standard deviations of the zero-mean
normally distributed random forecast errors of wind farms,
sk,8k 2 K, are temporally and spatially uncorrelated with
respect to hours of the day and among wind farm sites,
respectively.

Remark 1: The assumption of spatial independence of
forecast errors is realistic for markets operating over a large
geographical area, as discussed in [11]. The absence of
temporal correlation is an assumption adopted in this paper
to allow for hourly decoupling of the problem.

Under Assumption 1, the total error or deviation during
real-time is defined as

D = Â
k2K

dk, (1)

where dk refers to the error in forecast for the wind farm
k. As a result, the uncertain parameter D is assumed to be
drawn from a multivariate Normal distribution, N(0Nk

,S),
where S = diag(s2

1 , s2
2 , . . . , s2

Nk
).

C. Chance-constrained Policy-based Reserves

Considering ag as a participation factor in the provision of
reserves by generator g, we define an affine reserve policy
such that when activated in real-time, the total generation
from g is given by p̃g = pg �Dag.

In the proposed day-ahead market clearing mechanism,
optimal hourly reserve policies characterized by ag, in



addition to the nominal hourly energy dispatch, pg for
each flexible generator are decided by the centralized MO.
The reserve policies, which are then activated during real-
time operation, define each generator’s participation in the
imbalance mitigation. Facing the uncertainty in wind power
forecast errors D, MO’s objective is to minimize the expected

cost of operating the power system. We consider quadratic
costs of generation and simplify the probabilistic expectation
term in the objective function, using the zero-mean property
of forecast errors, as discussed in [11]. Further, we consider
a single-node model of the transmission grid. The chance-
constrained optimization problem solved by the MO for joint
clearing of energy and reserves is formulated as

min.
pg,ag

Â
g2G

"
C

Q

g

⇥
p

2
g
+(e>Se)a2

g

⇤
+C

L

g
pg

#
(2a)

s.t. Â
g2G

pg + Â
k2K

Ŵk = D (2b)

Â
g2G

ag = 1 (2c)

P[pg �Dag � 0] � (1� eg), 8g 2 G (2d)
P[pg �Dag  p

max
g

] � (1� eg), 8g 2 G (2e)

P[Dag  R
DN,max
g

] � (1� eg), 8g 2 G (2f)

P[�Dag  R
UP,max
g

] � (1� eg), 8g 2 G (2g)
0  ag  1, 8g 2 G, (2h)

where C
Q

g and C
L
g

are the quadratic and linear production
costs of generator g and e 2 RNk is a vector of all ones.
Further, p

max
g

, R
DN,max
g and R

UP,max
g are the maximum pro-

duction capacity, maximum downward reserve capacity and
maximum upward reserve capacity available with generator
g, respectively. P[·] denotes probability and eg is the proba-
bility of the output from generator g to exceed the maximum
and minimum limits of production and reserve capacity.

Constraint (2b) ensures the supply-demand balance for
available point forecasts of wind power production, whereas
(2c) ensures that the total deviation from point forecasts
is exactly mitigated in real-time. These two constraints are
deterministic and independent of wind power production re-
alizations, thus ensuring security of supply for the inflexible
demand for all realizations of the uncertainty.

Chance constraints (2d)-(2g) limit the probability of viola-
tion of bounds on net generation and activated reserves for all
realizations of the uncertain parameter D to at most eg. The
choice of risk parameter eg influences the conservativeness of
the market clearing solution, with smaller values leading to
a higher cost of operation. To study properties of the market
clearing mechanism (2), we now introduce a linearized
reformulation of the chance constraints inspired by [18], by
adopting the following assumption.

Assumption 2: The participation factors, ag, 8g 2G, char-
acterizing the affine reserve policy are non-negative, as
enforced by (2h).

Remark 2: While it is intuitive to assume that ag should
be considered non-negative, it may be beneficial to drop
this assumption when working with a more realistic power

Market
Operator

Flexible
Generator

g

{p
min
g

, p
max
g

, R
UP,max
g , R

DN,max
g ,

c
Q

g , c
L
g
}

{p
⇤
g
, a⇤

g
,

l DA*,l RP*}

Fig. 2: Interaction between a flexible generator g and the
market operator. Superscript * denotes optimal values.

system model that considers the transmission network or has
elements such as energy storage. In that case, the resulting
problem is a second-order cone program, evaluating the
market properties of which is left for future work.

Under Assumptions 1 and 2, using [19, Theorem 10.4.1],
the problem (2) can be exactly reformulated as a convex
quadratic program in (pg,ag), denoted by Pcc, i.e.,

min.
pg,ag

Â
g2G

"
C

Q

g

⇥
p

2
g
+(e>Se)a2

g

⇤
+C

L

g
pg

#
(3a)

s.t. Â
g2G

pg + Â
k2K

Ŵk = D : l DA (3b)

Â
g2G

ag = 1 : l RP (3c)

pg �F�1
(1�eg)ag

q
(e>Se) � 0, 8g 2 G (3d)

pg +F�1
(1�eg)ag

q
(e>Se)  p

max
g

, 8g 2 G (3e)

�F�1
(1�eg)ag

q
(e>Se)  R

DN,max
g

, 8g 2 G (3f)

F�1
(1�eg)ag

q
(e>Se)  R

UP,max
g

, 8g 2 G (3g)

0  ag  1, 8g 2 G, (3h)

where F�1
(·) is the inverse cumulative distribution function

or the quantile function of the standard Normal distribution
N(0,1). The risk parameter eg is chosen from the domain
[0, 0.5), such that F�1

(1�eg) is always positive [18]. Note that
all constraints are linear.

In problem Pcc, the dual variables of constraints (3b) and
(3c), provide the market clearing price for energy, l DA and
reserve policies, l RP, which are then used for remuneration
of the generators for energy pg and reserve participation ag,
respectively. The interaction between a flexible generator, g

and the market operator is illustrated in Figure 2.
In practice, it can be expected that hour-ahead of real-

time operation, when the uncertainty in forecast is consid-
erably reduced compared to the day-ahead stage, the market
operator broadcasts the best estimate of “realized forecast
errors” D which is used by flexible generators with non-zero
ag to adjust their real-time production for the next hour.
Any remaining instantaneous errors are considered to be
handled by primary frequency control or spinning reserves.
This eliminates the need for an additional real-time balancing
market, prevalent in current practice, in the proposed policy-
based market clearing mechanism.



D. Mathematical Interpretations of Problem Pcc

1) As an equilibrium problem: In alignment with the
discussions in [20] and [21], problem Pcc can be expressed as
an equilibrium problem, wherein each market player solves a
profit maximization problem while being connected through
market clearing conditions (supply-demand balance). For the
flexible generators, the profit maximization problem is

8g 2 G

8
>><

>>:

max.
pg,ag

(l DA
pg +l RPag)

�
⇥
C

Q

g (p
2
g
+(e>Se)a2

g
)+C

L
g

pg

⇤

s.t. (3d)� (3h).

(4)

Unlike the flexible generators, the wind farms have no profit
maximization strategy considering they have a zero cost of
production and no cost associated with spillage of excess
wind. Similarly, inflexible demand is considered to have no
profit maximization role in problem Pcc. However, the MO
enforces the constraints (3b) and (3c), which are the coupling
constraints that connect the flexible generators, wind farms
and the inflexible demand.

2) As a non-cooperative game: The optimization problem
Pcc can be interpreted as a non-cooperative game among
two sets of players. First, the flexible generators g 2 G,
while operating within constraints of their production and
reserve capacities, try to maximize their profits (or minimize
their costs) from participation in the market for energy and
reserves. Second, the MO who acts as a “price setter” to
ensure that the market price for energy and reserves are set
at as low values as possible, so that the inflexible demand D

can be met at the lowest cost possible.
We define xg = [pg ag]> as the decision vector for the

flexible generator g, such that xg 2 Kg where Kg ⇢ R2
+ is its

strategy set, from which its choices for the bid quantity pg

and participation factor ag are drawn. Similarly, we define
L = [l DA l RP]> as the decision vector for the MO, such
that L 2 KMO where KMO ⇢ R2

+. The cost function for the
flexible generator g can thus be expressed as

Jg(xg,L) = (x>
g

Qgxg +L
>
g

xg)�L>
xg, 8xg 2 Kg, (5)

where L denotes cleared market prices and represents deci-
sions made by all other participants of the game i.e. the MO
and flexible generators other than g, in the cost function for g.

The costs Qg =

"
C

Q

g 0
0 C

Q

g (e>Se)

#
and Lg =


C

L
g

0

�
represent

the quadratic and linear costs for g.
Similarly, the MO is subject to a cost function which can

be expressed as

JMO(L,xg) = S
>L, 8L 2 KMO, (6)

where S =


�Âg2G pg �Âk2KŴk +D

�Âg2G ag +1

�
represents the deci-

sions made by other players, i.e. all flexible generators g 2 G.

III. EVALUATION OF MARKET PROPERTIES
In this section, the problem definition and interpretations

presented in section II are used to evaluate market properties
of problem Pcc.

A. Existence and Uniqueness of Nash equilibrium (NE)

Let G(Z,K,{Ji}i2Z) denote the non-cooperative game
among the flexible generators and the market operator, where
Z = (G [ {MO}) denotes the set of all players and K =
’i Ki = (K1 ⇥K2 ⇥ · · ·⇥KNg

⇥KMO) denotes the strategy set
for the game. Further, the decision variables of all players
can be stacked to define a simultaneous strategy vector
z = [x>

1 · · · x
>
Ng

L>]>, such that z 2 R2(Ng+1) contains the
strategy decisions of each of the players as a response to
other players’ actions.

Proposition 1: For the non-cooperative game among flex-

ible generators and the market operator, G(Z,K,{Ji}i2Z), a

Nash equilibrium exists.

Proof: A simultaneous strategy vector z
⇤ 2 K is a Nash

equilibrium if and only if

Ji(z
⇤
i
,z⇤

�i
)  Ji(zi,z

⇤
�i

), 8zi 2 Ki, 8i 2 Z. (7)

To prove that Nash equilibria exist for the game G, we
employ a theorem presented in [22, Theorem 1]. In the
game G, each flexible generator g has a strategy set Kg

formed by the upper and lower bounds of production and
reserve capacities, while the market operator has a strategy
set KMO which is formed by the non-negativity bounds as
well as price caps set for the market clearing. This satisfies
the condition of compactness and convexity for Ki. Further,
the cost function Jg in equation (5) is quadratic and thus,
continuous over z and convex over xg for fixed values of
xg0 = xg0 , 8g

0 2 (G�{g}) and L = L. Likewise, the market
operator’s cost function JMO, given by equation (6) is linear
and continuous in z and convex over L for fixed values of
xg = xg, 8g 2 G. From [22, Theorem 1], this proves that at
least one Nash equilibrium exists for the game G.

The vector(s) z
⇤ are a set of strategies for the i players of

the game G in which each player chooses the best response

to other players’ decisions, implying that no player can lower
their cost by unilaterally deviating their action from z

⇤
i

to any
other feasible point, z̃i.

Proposition 2: For the non-cooperative game among flex-

ible generators and market operator, G(Z,K,{Ji}i2Z) a

unique Nash equilibrium exists.

Proof: This is proven by employing tools from Vari-
ational Inequalities (VIs) and their equivalence with Nash
equilibria. For the game G, under the assumption that the
game is played only by market players who have been
dispatched or committed, the strategy sets Ki for flexible
generators are compact, convex and nonempty. Further, as
discussed in Proposition 1, the cost functions Ji(zi,z�i) for
every fixed z�i 2 K�i are differentiable. Upon satisfaction of
the above conditions, [15, Proposition 1.4.2] allows us to
express the problem of finding Nash equilibria for G as a
VI(F,K) problem with

F(z) =

2

6664

—1J1(z1,z�1)
...

—Ng
JNg

(zNg
,z�Ng

)
—MOJMO(zMO,z�MO)

3

7775
(8)



and K = ’i Ki = (K1 ⇥ K2 ⇥ · · · ⇥ KNg
⇥ KMO), as defined

before. The vector F(z) 2 R2(Ng+1) is also referred to as
the “game map” for G. To prove the singleton nature of the
solution set SOL(F,K) to the VI(F,K) (and by equivalence,
as per [15, Proposition 1.4.2], uniqueness of Nash equilibria
for G), we compute the Jacobian, JF(z) 2 R2(Ng+1)⇥2(Ng+1)

of the game map, presented in Appendix A. As it can be
observed, JF(z) is symmetric which implies that there exists
an equivalent optimization problem solving VI(K,F), whose
first-order optimality conditions are given by JF(z). This
optimization problem is identical to Pcc which has a convex
quadratic objective function and thus, has a unique minima.
Thus, by equivalence of the optimization problem Pcc with
the VI(K,F) and game G (per [15, Proposition 1.4.2]), we
show that G has a unique Nash equilibrium.

B. Desirable Market Properties

Building further on the discussion regarding existence and
uniqueness of Nash equilibria, the following evaluates the
satisfaction of the desirable market properties [16] by the
solution to problem Pcc.

Proposition 3 (Cost recovery for flexible generators): An

optimal solution to Pcc ensures a non-negative payoff for

the flexible generators under all possible market clearing

outcomes and uncertainty realizations.

Proof: Mathematically, the non-negativity of payoff for
flexible generators holds true if, at the optimal solution

(l DA⇤
p

⇤
g
+l RP⇤a⇤

g
)

�
⇥
C

Q

g
(p

⇤2
g

+(e>Se)a⇤2
g

)+C
L

g
p

⇤
g

⇤
� 0, 8g, (9)

where the superscript ⇤ indicates the optimal values for
pg, ag, l DA and l RP. To prove the satisfaction of con-
dition (9), we first formulate the dual problem for each
flexible generator’s profit maximization problem, discussed
in (4). Defining a set of Lagrangian multipliers, X =
{µg, µg, rDN

g
, rUP

g
, cg, cg} for the constraints (3d)-(3h),

the dual problem can be formulated as

8g 2 G
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>>>>>>>>>><

>>>>>>>>>>:
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g
� µ
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, rUP
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, cg, cg � 0.

(10)

It should be noted that the dual problem (10) has an objective
that is a sum of products of non-negative parameters and
variables and thus, is always non-negative. Strong duality
theory enforces primal (4) and dual (10) problems to have
identical objective functions at optimal solution. Thus, (9)
holds true for all market price and uncertainty outcomes.

Proposition 4 (Revenue adequacy for the MO): An opti-

mal solution to Pcc ensures that the market operator never

incurs a financial deficit for all possible market clearing

outcomes and uncertainty realizations.

Proof: At the optimal solution to problem Pcc, we
multiply the equality constraints (3b) and (3c) with the
optimal market clearing prices (l DA⇤,l RP⇤) and subtract (3c)
from (3b) to obtain the following

(l DA⇤
D�l RP⇤) = Â

g2G
l DA⇤

p
⇤
g
+ Â

k2K
l DA⇤

Ŵk

� Â
g2G

l RP⇤a⇤
g
. (11)

The left-hand side of (11) is the total payment from loads less
the reserve policy payments made to flexible generators by
the market operator. Under any realization of wind forecast
errors D in real-time, the right-hand side of (11) equals to
the left-hand side considering that constraints (3b) and (3c)
are strict equalities that are satisfied at the optimal solution.
The MO, therefore, never incurs a financial deficit.

Proposition 5 (Market efficiency): Under the assumption

of perfect competition, the market clearing problem Pcc

ensures maximization of social welfare, such that no market

participant desires to deviate from the market outcomes.

Proof: In an efficient market, social welfare is max-
imized and no market participant desires to deviate from
the market outcomes, meaning that each market player
maximizes their profit at the optimal solution of Pcc. This is
proven, under the assumption of perfect competition among
flexible generators, by the identical Karush-Kuhn-Tucker
(KKT) optimality conditions of Pcc and the equilibrium prob-
lem interpretation discussed in section II-D.1. The identical
KKT conditions are presented in Appendix B.

Proposition 6 (Incentive compatibility): Under the as-

sumption of perfect competition, the market clearing problem

Pcc is such that each player can maximize its objective just

by acting according to its “true” preferences.

Proof: Incentive compatibility implies that it is optimal
for each participant to offer their production and reserves at
a price equal to their “true” production cost. We define a
bid made by a flexible generator g to MO prior to market
clearing Pcc, Bg = [(CQ

g ,CL
g
),xg] as a true-cost bid if the tuple

(CQ

g ,CL
g
) represents its true production cost. From the game

interpretation of Pcc discussed in section II-D.2, the cost
function for generator g at optimal solution (x⇤

g
,L⇤) is

Jg(x
⇤
g
,L⇤) = (x⇤>

g
Qgx

⇤
g
+L

>
g

x
⇤
g
)�L⇤>

x
⇤
g
, 8xg 2 Kg. (12)

If a generator were to bid, B̃g = [(C̃Q

g ,C̃L
g
),xg] with a cost

tuple (C̃Q

g ,C̃L
g
) higher than its true-cost tuple, which is the

only rational deviation from a true-cost bid, the resulting
cost function at the solution is given by (13) below. Note
that, under the assumption of perfect competition, the opti-
mal market clearing prices L⇤ are independent of a single
generator’s bid.

Jg(x̃
⇤
g
,L⇤) = (x̃⇤>

g
Qgx̃

⇤
g
+L

>
g

x̃
⇤
g
)�L⇤>

x̃
⇤
g
, 8xg 2 Kg. (13)

Comparing (13) with (12), we point out that Jg(x̃⇤
g
,L⇤) �

Jg(x⇤
g
,L⇤) because from the proof of Proposition 1, x̃

⇤
g

is a
feasible suboptimal value for xg. Thus, true-cost bidding is
the dominant strategy for flexible generators.
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Fig. 3: Market clearing problem Pdet: Average expected
end-of-day operations cost and its variability, considering
different values of MRR.

IV. CASE STUDY

Data from a 24-bus system outlined in [23] is adapted to
form a single-node electricity supply system with 6 wind
farms. Each wind farm has an installed capacity of 200 MW
and the power production from it has a zero-mean normally
distributed forecast error with standard deviation, sk equal
to 7.5% of installed capacity, as in [24]. Thus, problem
Pcc is solved considering the standard deviation of total
forecast error as S = Âk sk. The value of risk parameter,
eg for all generators is fixed as 0.05. The peak demand in
the simulation time horizon of 24 hours is 2,650 MW. The
cost and capacity data of the flexible generators as well as
the demand data is available as an online appendix in [25].

To highlight benefits of the proposed policy-based reserve
procurement and operation, a deterministic benchmark (Pdet)
with energy and reserve co-optimization is set up. As for-
mulated in Appendix C, the MO solves a day-ahead market
clearing problem with an exogenous MRR, obtaining the
optimal power dispatch as well as procuring the reserves
needed. During real-time operation, through another market-
based mechanism, reserves are activated based on the bounds
defined by day-ahead reserve allocation. In the absence of
currently operational joint clearing of energy and reserves in
the European electricity markets, this benchmark reflects a
natural extension to the sequential market clearing approach.

The parameter MRR for the problem Pdet is obtained
by performing Out-of-Sample (OOS) simulations for 1000
scenarios of wind forecast errors to evaluate the expected
end-of-day system operations cost while gradually increasing
MRR, as shown in Figure 3. The orange line denotes the
average value, boxes represent 25th and 75th percentiles
and the whiskers extend to 5th and 95th percentiles. Red
diamonds show the outliers. At low values of MRR, the
expected cost of operation is observed to be high and has
high variability due to load shedding in several scenarios of
uncertainty realization, while at high values the cost increases
due to the higher cost associated with over-dimensioning of
reserve requirements. For comparison with results from the
market clearing proposed in this paper, we fix the value of
MRR at 200 MW.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Degree of Unbiasedness, �

400

420

440

460

480

500

E
xp

ec
te

d
E

n
d
-o

f-
D

ay
C

os
t

[k
E

U
R

]

Benchmark

Fig. 4: Market clearing problem Pcc: Average expected
end-of-day operations cost and its variability, considering
different values of g .

First, biased OOS simulations2 are performed wherein the
1000 scenarios for wind forecast errors are drawn from a
Normal distribution identical to that assumed by the chance
constraints in problem Pcc for reformulation of the objective
(3a) and chance constraints (3d)-(3g). It is expected that mar-
ket clearing problem Pcc should outperform Pdet, resulting
in lower system operations cost. This stems from the fact
that problem Pcc provides an optimal solution with respect
to this uncertainty distribution.

To study unbiased OOS simulations, considering the same
set of scenarios, we replace the standard deviation, S in
problem Pcc with (g ⇤ S), such the parameter g represents
the degree of unbiasedness of the probability distribution
assumed in Pcc. Figure 4 shows the variation in expected end-
of-day system operations cost with g (green diamonds show
the outliers). The red horizontal line indicates the average
expected end-of-day cost for the benchmark market clearing
Pdet, operating with an MRR, MR = 200 MW. The case
of g = 1 is equivalent to the previously discussed biased
OOS, considering that the probability distribution assumed
in problem Pcc is identical to actual wind forecast errors.
For g < 1, the problem Pcc underestimates the actual wind
forecast errors, resulting in lower costs of day-ahead reserve
procurement. However, with the reserve control policy in
place, the MO is able to successfully mitigate the imbalances
in real-time at a low cost. For values of g larger than 1, the
problem Pcc overestimates the actual wind forecast errors,
thus resulting in higher costs of reserve procurement to
ensure mitigation of imbalances in real-time. For g > 4, we
observed infeasibility of the market clearing problem Pcc as
we reach the limits of available reserve capacity from the
generators to successfully mitigate the imbalance. Table I
presents a comparison of average expected system operations
cost for market clearing using problem Pdet with that using
Pcc for a selection of values of g . As it can be observed,
market clearing problem Pcc leads to a reduction of 5.4%
in the average expected end-of-day system operations cost

2Here, the notion of OOS simulations refers to the different second
moments, S of the Normal distribution from which scenarios of actual wind
forecast errors are drawn. In contrast, stochastic programming literature
typically considers random scenarios drawn from other distributions as OOS.



TABLE I: Comparison between average expected costs ob-
tained from Pdet and Pcc

Costs [ke] Pdet Pcc Pcc Pcc
MR = 200 MW g = 0.5 g = 1.0 g = 3.0

Operations 401.4 398.2 400.9 408.0
Reserves 70.2 0.6 2 38.1
Total 471.6 398.6 402.9 446.1
Change [%] - -15.5% -14.6% -5.4%
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Fig. 5: Pdet, Pcc: Day-ahead (DA) dispatch and market prices

compared to Pdet, even if the actual wind forecast errors are
over-estimated by a factor of 3 (g = 3). Results of the case
study demonstrate the resilience of proposed market clearing
problem Pcc to large forecast errors within the normally
distributed forecast error assumption.

A short discussion on the day-ahead market clearing
outcomes of Pdet and Pcc follows. Figures 5a and 5b show a
comparison of the optimal dispatch of the flexible generators
and wind farms to meet the inflexible load for Pdet and Pcc.
While reserve capacity is scheduled in the Pdet case, in Pcc
explicit capacity reserve procurement is replaced by control
policies, characterized by ag. Optimal day-ahead price for
energy, l DA and for the reserve policies, l RP(in Pcc) for
Hours 10 through 15 are shown in Figures 5c and 5d. Hours
with higher wind power forecast, Âk2KŴk, result in lower
prices, l DA for both Pdet and Pcc, owing to the zero marginal
cost of wind farms. Moreover, as observed in Figure 5d,
higher values of the g result in a higher price of reserve
policies, l RP signifying the overestimation of actual wind
forecast errors by the market clearing problem, Pcc. Figure
6 shows the allocation of the participation factors, ag for the
same hours among the generators having available reserve
capacity. It is observed that the more expensive generator
G4 is allocated non-zero ag in the hours with high share of
wind and with higher values of g .

V. CONCLUSION
We proposed a market clearing mechanism for day-ahead

electricity markets that co-optimizes energy and control
policy-based reserves using chance-constrained optimization
techniques. Using tools from equilibrium modeling and VIs,
we proved the existence and uniqueness of Nash equilibria
for this market clearing. No desirable properties inherent
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Fig. 6: Allocation of participation factors, ag with g

to the prevalent deterministic market clearing are lost in
the proposed chance-constrained policy-based market clear-
ing. Under assumptions of proper uncertainty modeling,
we demonstrated the reduction in average expected system
operations cost over a deterministic benchmark.

In future, the suggested non-requirement of energy redis-
patch should be further studied to determine its impact on
system reliability and primary frequency control, considering
that the estimation of the true moments of uncertainty
is challenging. Evaluation of the properties of proposed
policy-based reserve procurement considering the temporal
and spatial correlation of uncertainty, a power system with
congested line capacity limits and generic control policies
defined to include other flexibility sources (e.g. demand
response, energy storage) also remain topics for future work.

APPENDIX

A. Game Map for G
The Jacobian matrix, JF(z), of the game map F(z) for the

non-cooperative game G, discussed in section III-A is
2
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B. KKTs of Optimization Problem Pcc

Considering L as the Lagrangian function for the opti-
mization problem Pcc, its KKT optimality conditions are
given by (14). Its equivalent equilibrium problem (discussed
in section II-D.1) has an identical set of KKT conditions.

(3b)� (3c) (14a)
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C. Deterministic Benchmark, Pdet

The day-ahead deterministic co-optimization of energy
and reserves solved by the MO is given in problem (15).

min.
pg,Rg

Â
g2G

⇥
C

Q

g
p

2
g
+C

L

g
pg +C

R

g
Rg

⇤
(15a)

s.t. Â
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Ŵk = D, : l DA (15b)
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, 8g 2 G (15f)
pg �Rg � 0, 8g 2 G, (15g)

where the MRR, MR is an exogenous parameter, C
R
g

denotes
the cost of reserve procurement and (pg,Rg) represents the
set of power dispatch and reserve allocation for generator
g. The real-time balancing market clearing, formulated in
problem (16), activates the reserve energy from flexible
generators, rg, limited to the optimal reserve capacities R

⇤
g

allocated day ahead (constraint (16c)). Further, considering
that the actual forecast error D could take extreme values in
some cases, real-time balancing allows for wind spillage, W

sp
k

at zero cost and load shedding, D
sh at C

VoLL = e500/MWh.
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Abstract—Using flexibility from the coordination of power
and natural gas systems helps with the integration of variable
renewable energy in power systems. To include this flexibility
into the operational decision-making problem, we propose a dis-
tributionally robust chance-constrained co-optimization of power
and natural gas systems considering flexibility from short-term
gas storage in pipelines, i.e., linepack. Recourse actions in both
systems, based on linear decision rules, allow adjustments to
the dispatch and operating set-points during real-time operation
when the uncertainty in wind power production is revealed. We
convexify the non-linear and non-convex power and gas flow
equations using DC power flow approximation and second-order
cone relaxation, respectively. Our coordination approach enables
a study of the mitigation of short-term uncertainty propagated
from the power system to the gas side. We analyze the results of
the proposed approach on a case study and evaluate the solution
quality via out-of-sample simulations performed ex-ante.

Index Terms—Linear decision rules, Distributionally robust
chance constraints, Linepack flexibility, Power and natural gas
coordination, Second-order cone program.

I. INTRODUCTION

Natural gas-fired power plants (NGFPPs) typically provide
operational flexibility to power systems with a high share of
intermittent renewable energy. Short-term gas storage in nat-
ural gas pipelines, known as linepack, provides an additional
source of flexibility [1] at no extra investment cost. Efficient
procurement of flexibility from the natural gas system during
day-ahead scheduling of power systems requires consideration
of the operational constraints of the natural gas system.
Further, with the increasing share of intermittent renewable
energy sources in the power system, the need for flexibility and
thereby, the interdependence between power and natural gas
systems is becoming stronger [2]. As a result, the coordination
between power and natural gas systems during the day-ahead
dispatch has been a topic of research interest in recent years.
For example, various levels of coordination and information
exchange between the systems are discussed in [3], [4], while

The work of A. Ratha was supported by a Ph.D. grant provided by the Flemish
Institute for Technological Research (VITO) and scholarship from Technical
University of Denmark (DTU). The work of A. Schwele and J. Kazempour
was supported by the Danish EUD Programme through the Coordinated
Operation of Integrated Energy Systems (CORE) project under the grant
64017-0005.

[5], [6], [7], [8], [9] model full integration of the power
with the natural gas system. The value of gas system related
flexibility for the power system is quantified in [6] and [7] in
a deterministic manner.

Increasing interactions between power and natural gas sys-
tems, however, result in the propagation of short-term uncer-
tainty faced by power systems to the gas side. Prior works on
the coordinated operation of power and natural gas systems
have largely ignored this short-term uncertainty. This may
result in additional recourse actions necessary during the real-
time operation stage when the flexibility from the natural gas
system is not correctly anticipated. Affine policies, built on the
theory of linear decision rules, have been a preferred choice for
day-ahead decision making, wherein nominal dispatch sched-
ules along with the recourse actions for real-time operation
are optimally decided [10]. In this paper, we introduce a
unified framework to elicit flexibility based on affine policies
from agents, e.g., power producers, natural gas suppliers as
well as the network assets, i.e., linepack. Our affine policies
are decided based on the features of uncertainty drawn from
the historical measurements, with no distributional restriction
imposed on the random variables.

Previous works discussing uncertainty-aware coordination
between power and natural gas systems use stochastic pro-
gramming approaches such as scenario-based [5], robust [8],
and chance-constrained optimization [9]. Reference [5] pro-
poses a two-stage stochastic program for the day-ahead and
real-time operations of integrated power and natural gas sys-
tem under uncertainty from renewable generation. In a similar
direction, a robust dispatch framework is proposed in [8]
which models uncertainty through intervals and extreme sce-
nario approximation. Chance-constraints are introduced into
the planning problem of the integrated power and natural gas
system [9]. While scenario-based approaches [5] incur a high
computational expense due to a large number of scenarios
needed to characterize the uncertainty properly, robust ap-
proaches [8] often suffer from over-conservativeness of the
solution due to the design objective to minimize worst-case
cost. Distributionally robust chance-constrained formulation of
the problem [11] allows for a tunable probabilistic violation
of operational limits when facing extreme realizations of
uncertainty which is characterized by an ambiguity set.
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In this work, we adopt a distributionally robust chance-
constrained optimization technique, considering its advantages
over other stochastic programming approaches [11], to intro-
duce a coordinated day-ahead dispatch of power and natural
gas systems taking the flexibility provided by linepack into
account. To the best of our knowledge, this is the first paper
to bring linepack flexibility to the day-ahead dispatch problem,
while modeling and mitigating the short-term uncertainty
propagated from the power system to the natural gas system.
Studying this uncertainty propagation opens new pathways
for the endogenous valuation of the natural gas network as
a provider of short-term flexibility to power systems. This
could potentially result in the design of new market-based
coordination mechanisms and market products enabling gas
system agents and the network to play an active role in pro-
viding flexibility to the power system. From a methodological
perspective, our main contribution is a tractable reformulation
of distributionally robust chance constraints for the combined
power and gas dispatch problem considering linepack.

The rest of this paper is organized as follows: Section II
presents the distributionally robust chance-constrained power
and natural gas dispatch problem. Section III discusses the
solution methodology, which is then applied to a case study
in Section IV. Finally, conclusions are drawn and the avenues
for future work are discussed in Section V.

II. PROBLEM FORMULATION

A. Preliminaries
In the following, we introduce the operation of a coupled

power and natural gas system, wherein power generated from
dispatchable power plants i 2 I and wind farms j 2 J is used
to meet the inelastic electricity demand from a set of loads
d 2 D. The dispatchable generators comprise of NGFPPs
i 2 G and non-NGFPPs i 2 C, such that G\C = ; and G[C =
I. On the gas side, natural gas suppliers k 2 K, together with
available linepack in the gas network, are dispatched to meet
the natural gas demand from inelastic gas loads and the fuel
needed by NGFPPs. The non-linear and non-convex power
and gas flow equations are convexified using DC power flow
approximation and second-order cone relaxation, respectively.
We assume that wind power is available at zero marginal cost
of production. Power produced by wind farms during real-time
operation is the sole uncertainty source considered.

B. Uncertainty Model
For wind farm j, the day-ahead point forecast for time

period t 2 T is given by W PF
j,t . The forecast error observed

in real-time is assumed to be a random variable �j,t, such
that the overall system uncertainty can be characterized by
� = [�11 �21 . . . �|J |t . . . �|J ||T |]

> 2 R|J ||T |, where R is
the set of real numbers and | · | is the cardinality operator over
a set. We consider that � follows an unknown multivariate
probability distribution P 2 �, where � is an ambiguity set
defined as

� = {P 2 �0(R|J |) : EP[�] = µ�, EP[��>] = ⌃�}, (1)

such that the family of distributions, �0(R|J |) contains all
probability distributions whose first and second-order mo-
ments are given by known parameters µ� 2 R|J ||T | and
⌃

� 2 R|J ||T |⇥|J ||T |, respectively. Further, EP[·] denotes
expectation with respect to the distribution P and (·)> is
the transpose operator. Without any loss of generality, we
assume that the mean µ� = 0 and that the covariance
matrix ⌃� can be empirically estimated from historical record
of wind forecast errors. The structure of the positive semi-
definite covariance matrix, ⌃� is such that its diagonal blocks,
comprised of sub-matrices, ⌃�

t 2 R|J |⇥|J |, 8t 2 T , capture
the spatial correlation among the wind forecast errors in period
t, while the off-diagonal blocks contain information about
spatio-temporal correlation of the uncertain parameters.

With this description of uncertain wind forecast errors, the
net deviation from the point forecasts of all wind farms in the
time period t is e

>�t where e 2 R|J | is a vector of all ones.
The temporally collapsed random vector is formed as: �t =
Ft�, where Ft 2 R|J |⇥|J ||T | is a selector matrix formed by
blocks of null matrices 0 2 R|J |⇥|J | and a single block of
identity matrix 1 2 R|J |⇥|J |, starting at column (|J |(t�1)+
1), 8t 2 T . As a sign convention, e>�t > 0 implies deficit of
wind power available in the system during real-time operation
stage as compared to the day-ahead forecast.

C. Uncertainty-Aware Power and Natural Gas Coordination
The proposed day-ahead coordinated electricity and natural

gas model is a stochastic program, presented in (2) in the
following. The objective function has a min-max structure such
that the total expected system dispatch cost is minimized while
the uncertain variable � draws from a probability distribution
P 2 � that results in maximizing the expected cost of dispatch,
i.e., the worst-case probability distribution.

min
�1

max
P2�

EP

"
X

t2T

⇣ X

i2C
CE

i p̃i,t +
X

k2K
CG

k g̃k,t

⌘#
(2a)

subject to

e
>
p̃t + e

>(WPF
t � �t) = e

>
D

E
t , 8t, (2b)

P̃
inj
t =  Ip̃t + J(W

PF
t � �t) � DD

E
t , 8t, (2c)

min
P2�

P[{ P̃
inj
t }(n,r) � �{F}(n,r)]

� (1 � ✏nr), 8(n, r) 2 L, 8t, (2d)

min
P2�

P[{ P̃
inj
t }(n,r)  {F}(n,r)]

� (1 � ✏nr), 8(n, r) 2 L, 8t, (2e)
min
P2�

P[p̃i,t � P i] � (1 � ✏i), 8i, 8t, (2f)

min
P2�

P[p̃i,t  P i] � (1 � ✏i), 8i, 8t, (2g)

min
P2�

P[g̃k,t � Gk] � (1 � ✏k), 8k, 8t, (2h)

min
P2�

P[g̃k,t  Gk] � (1 � ✏k), 8k, 8t, (2i)

min
P2�

P[p̃rm,t � PRm] � (1 � ✏m), 8m, 8t, (2j)

min
P2�

P[p̃rm,t  PRm] � (1 � ✏m), 8m, 8t, (2k)
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min
P2�

P[p̃ru,t  �m,u p̃rm,t] � (1 � ✏mu),

8(m, u) 2 Zc, 8t, (2l)
min
P2�

P[q̃m,u,t � 0] � (1 � ✏mu), 8(m, u) 2 Z, 8t, (2m)

min
P2�

P[q̃in
m,u,t � 0] � (1 � ✏mu), 8(m, u) 2 Z, 8t, (2n)

min
P2�

P[q̃out
m,u,t � 0] � (1 � ✏mu), 8(m, u) 2 Z, 8t, (2o)

q̃2
m,u,t = K2

m,u(p̃r2
m,t � p̃r2

u,t), 8(m, u) 2 Z, 8t, (2p)

q̃m,u,t =
q̃in
m,u,t + q̃out

m,u,t

2
, 8(m, u) 2 Z, 8t, (2q)

h̃m,u,t = Sm,u
p̃rm,t + p̃ru,t

2
, 8(m, u) 2 Z, 8t, (2r)

h̃m,u,t = H0
m,u + q̃in

m,u,t � q̃out
m,u,t, 8(m, u) 2 Z, t = 1, (2s)

h̃m,u,t = h̃m,u,(t�1) + q̃in
m,u,t � q̃out

m,u,t,

8(m, u) 2 Z, t > 1, (2t)

min
P2�

P[h̃m,u,t � H0
m,u] � (1 � ✏mu),

8(m, u) 2 Z, t = |T |, (2u)
X

k2AK
m

g̃k,t �
X

i2AG
m

�i p̃i,t

�
X

u:(m,u)2Z

(q̃in
m,u,t � q̃out

u,m,t) = DG
m,t, 8m, 8t, (2v)

where the set of stochastic variables is ⇥1={p̃i,t, g̃k,t, p̃rm,t,
q̃m,u,t, q̃in

m,u,t, q̃out
m,u,t, h̃m,u,t}. The terms in objective (2a) are

the expected cost of power generation by non-NGFPPs and
the cost of natural gas supply by gas suppliers derived from
marginal production cost CE

i and CG
k , respectively.

The inequalities (2d)-(2o) and (2u) are modeled as distribu-
tionally robust chance constraints. This means that at the op-
timal solution to problem (2), the probability of meeting each
individual constraint inside the square brackets P[·] is modeled
to have a confidence level of at least (1 � ✏(·)), where each
✏(·) lies within 0 and 1, i.e., ✏(·) 2 [0, 1]. Subscripts (·) take
the appropriate indices from the set {i, (n, r), k, m, (m, u)}
depending on the individual constraint.

Constraints (2b)-(2g) pertain to the power system. These
constraints include the power balance (2b), limits on the
stochastic power flows in the transmission lines (2c)-(2e) and
the upper (P i) and lower bounds (P i) on the stochastic power
production of generators (2f) and (2g). Vectors p̃t 2 R|I|,
W

PF
t 2 R|J | and D

E
t 2 R|D| represent the power produced

by generators, wind forecasts for wind farms and electricity
demand from loads in period t, while �t is the random vector
of forecast errors, as previously defined. Vector coefficients,
e in (2b) are of appropriate dimensions such that the total
supply and demand are balanced in each period t. The matrix
 2 R|L|⇥|N | represents the Power Transfer Distribution
Factor (PTDF) matrix, derived from the reactances of power
transmission lines [12], which maps the injections P̃

inj
t 2 R|N |

at the electricity nodes to the power flows in each of the
power lines (n, r) 2 L respecting capacity limits F in the
network. Similarly, matrices  I 2 R|N |⇥|I|,  J 2 R|N |⇥|J |,

and  D 2 R|N |⇥|D| map generators, wind farms and loads
to the electricity nodes, such that (2c) gives the nodal power
injections for all electricity nodes in the system.

Natural gas system constraints are given in (2h)-(2u). While
constraints (2h) and (2i) limit the stochastic gas supply g̃k,t by
supplier k in time period t to Gk and Gk, (2j) and (2k) limit
the nodal gas pressure p̃rm,t at each gas node m 2 M to be
within the physical limits PRm and PRm. For the natural gas
pipelines with compressors, Zc ⇢ Z , compression is modeled
linearly in (2l), which relate the inlet and outlet pressures
of two adjacent nodes through compression factor �m,u.
We consider that the direction of gas flow in each pipeline
(m, u) 2 Z is predetermined and (2m)-(2o) enforce this flow
direction in real-time. As remarked in [1], this assumption is
non-limiting for the high-pressure, gas transmission networks
when considering day-ahead operational problems. On the
contrary, it can be a limiting assumption while considering
a network expansion planning problem or a gas distribution
system wherein injections from distributed gas producers (e.g.,
biogas plants) cannot be neglected1. Equality constraints (2p),
known as Weymouth equation, describe the flow q̃m,u,t (given
by (2q) as the average of inflow, q̃in

m,u,t and outflow, q̃out
m,u,t)

along pipeline (m, u) as a quadratic non-convex function of
the pressures p̃rm,t and p̃ru,t at the inlet (m) and outlet
(u) nodes of the pipeline scaled by the pipeline resistance
constant Km,u. Constraints (2r) define the amount of linepack
in the pipelines as the average of inlet and outlet pressures,
scaled by the pipeline parameter Sm,u. Following the modeling
approach in [7], (2s)-(2u) describe the evolution of the amount
of linepack h̃m,u,t in a pipeline over time, with (2u) ensuring
that the linepack is not depleted at the end of the simulation
horizon beyond initial linepack amount H0

m,u. Supply-demand
balance of natural gas at each node is ensured in real-time
by equality constraints (2v) which also couple the power and
natural gas systems through the fuel consumed by the NGFPPs
scaled by a fuel conversion factor �i. The sets AK

m ⇢ K and
AG

m ⇢ G collect gas suppliers and NGFPPs that are located at
node m, respectively, while DG

m,t is the nodal gas demand.
The requirement to solve the stochastic program (2) during

the day-ahead stage renders the problem infinite dimensional,
as the optimization variables are a function of uncertain
parameters that are only revealed during real-time operation
on the next day. To enable solvability of the problem, we
adopt recourse actions based on linear decision rules [13]
for the sources of flexibility in the coupled system, i.e.,
flexible power generation and natural gas supply and linepack.
The assumption of affine response to uncertainty by flexible
agents, although somewhat limiting in light of the non-linear
dynamics of natural gas flow in the network, provides an
intuitive understanding of the methodology behind uncertainty
propagation from power system to natural gas system at a
lower complexity of exposition. Generalized decision rules,
for instance as discussed in [14], are left for future work.

1The assumptions on fixed gas flow directions may be violated in extreme
uncertainty realizations.
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D. Affine Policies

When solving the day-ahead dispatch problem, flexible and
adjustable agents in the coupled system, i.e., power producers
and gas suppliers, are assigned optimal affine policies in addi-
tion to the nominal schedule. These affine policies govern their
response to the realizations of uncertainty in wind forecast
errors during the real-time operation.

a) Power producers: The affine response from dispatch-
able power plants (NGFPPs and non-NGFPPs) is given by

p̃i,t = pi,t + (e>�t)↵i,t, 8i 2 I, 8t (3)

where p̃i,t is the stochastic power production of unit i in real-
time, pi,t is the nominal power production schedule if the
uncertainty were absent (perfect forecasts) and ↵i,t 2 [�1, 1]
denotes the participation factor of the unit towards mitigation
of the deviation.

b) Gas suppliers: The stochastic natural gas supply by
supplier k is given by

g̃k,t = gk,t + (e>�t)�k,t, 8k 2 K, 8t (4)

where gk,t is the nominal gas supply and �k,t is the partici-
pation factor of the supplier towards uncertainty mitigation.

The response to uncertainty by flexible network asset, i.e.,
linepack, is not directly adjustable as it depends on the
allocation of the above affine policies, subject to the topology
of the gas network and the physical gas flow constraints.

E. Uncertainty Response by Power and Gas Networks

Here, we discuss how uncertainty affects the flows in the
power and gas networks. We consider the case of imperfect
forecasts, i.e., e

>�t 6= 0.
During the real-time operation, power flows in the trans-

mission lines, modeled by (2c)-(2e) change depending on
the realized uncertainty �t, the affine responses of power
producers ↵i,t, and the spatial configuration of wind farms
and power producers. Moreover, given the response from
dispatchable power plants ↵i,t, the power balance constraint
(2b) holds true for any realization of uncertainty �t iff

e
>
pt + e

>
W

PF
t = e

>
D

E
t , 8t, (5a)

e
>↵t = 1, 8t. (5b)

Constraints (5) are derived from (2b) by separating the nominal
and uncertainty-dependent terms.

On the gas side, the uncertainty in gas flows, in response to
changes in gas supply �k,t and in fuel demand from NGFPPs
�i↵i,t, 8i 2 G, is mitigated by the flexibility provided by
linepack. It is vital to note that the real-time natural gas flows
and nodal pressures are functions of �k,t and ↵i,t, 8i 2 G.
However, the analytical derivation of this relationship is not
straightforward, given the non-linear gas flow dynamics and
the inter-temporal linkages associated with the linepack model.
As a simplification, we model the flow and pressure changes

as affine functions of uncertainty2. We model the real-time
natural gas flows in the pipelines as

q̃m,u,t = qm,u,t + (e>�t)�m,u,t, 8(m, u) 2 Z, 8t, (6a)
q̃in
m,u,t = qin

m,u,t + (e>�t)�
in
m,u,t, 8(m, u) 2 Z, 8t, (6b)

q̃out
m,u,t = qout

m,u,t + (e>�t)�
out
m,u,t, 8(m, u) 2 Z, 8t, (6c)

where qm,u,t, qin
m,u,t, qout

m,u,t denote the average flow rate, in-
flow and outflow rate of natural gas in the pipeline connecting
nodes m and u, in absence of forecast errors and the variables
�m,u,t, �in

m,u,t, �out
m,u,t represent the auxiliary variables which

model changes in these flow rates during real-time.
Consequently, the nodal balance constraint for natural gas

(2v) holds true for any realization of uncertainty �t iff
X

k2AK
m

gk,t �
X

i2AG
m

�i pi,t

�
X

u:(m,u)2Z

(qin
m,u,t � qout

u,m,t) = DG
m,t, 8m, 8t, (7a)

X

k2AK
m

�k,t �
X

i2AG
m

�i↵i,t

�
X

u:(m,u)2Z

(�in
m,u,t � �out

u,m,t) = 0 8m, 8t. (7b)

Constraints (7) are derived by separating the nominal and
uncertainty-dependent terms in (2v). Following a similar ap-
proach, (2q), 8(m, u) 2 Z, 8t, decomposes into

qm,u,t =
qin
m,u,t + qout

m,u,t

2
; �m,u,t =

�in
m,u,t + �out

m,u,t

2
. (8)

We model real-time pressures at gas nodes as

p̃rm,t = prm,t + (e>�t)⇢m,t, 8m, 8t, (9)

where prm,t and ⇢m,t denote the nominal pressure and the
auxiliary variable that models the change in pressure at node
m in real-time, respectively. This allows us to expand the
Weymouth equation in (2p) as, 8(m, u) 2 Z, 8t,

(q2
m,u,t + (e>

⌦t)
2�2

m,u,t + 2(e>
⌦t)�m,u,tqm,u,t) =

K2
m,u(pr2

m,t � pr2
u,t) + (e>

⌦t)
2K2

m,u(⇢2
m,t � ⇢2

u,t)

+ 2(e>
⌦t)K

2
m,u(⇢m,tprm,t � ⇢u,tpru,t). (10)

Separating terms that are independent of, quadratically- and
linearly-dependent on uncertainty in (10), it can be replaced
by the equalities (11) that must hold true for any realization
of the uncertainty3. For pipelines 8(m, u) 2 Z, 8t,

q2
m,u,t = K2

m,u(pr2
m,t � pr2

u,t), (11a)
�2

m,u,t = K2
m,u(⇢2

m,t � ⇢2
u,t), (11b)

�m,u,tqm,u,t = K2
m,u(⇢m,tprm,t � ⇢u,tpru,t). (11c)

2In future works, the simplified approach adopted in this paper must be
enhanced by considering the true, non-linear analytical relationship of changes
in real-time flows and nodal pressures to the affine policies.

3Modeling of uncertainty propagation to physical variables such as q̃m,u,t

and p̃rm,t by estimating sensitivities using Taylor series expansion around the
forecast has recently been applied to AC optimal power flow (see, e.g., [15]).
Since we solve the dispatch problem in day-ahead, wherein uncertainty around
the forecast point is non-negligible, we cannot justify such a sensitivity-based
approach.
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Fig. 1. Coordinated power and natural gas day-ahead dispatch

In addition to the Weymouth equations, the auxiliary variables
for flow changes (�m,u,t, �in

m,u,t, �out
m,u,t) and pressure changes

(⇢m,t) are coupled by the equality constraints (2r)-(2t) that
govern the amount of linepack and evolution of linepack in the
pipelines. On separating nominal and uncertainty-dependent
terms, these constraints should hold true for any realization of
�t iff the equalities (12) hold. For pipelines 8(m, u) 2 Z ,

hm,u,t = H0
m,u + qin

m,u,t � qout
m,u,t, t = 1, (12a)

hm,u,t = hm,u,(t�1) + (qin
m,u,t � qout

m,u,t), t > 1, (12b)
Sm,u

2
(⇢m,t + ⇢u,t � ⇢m,(t�1) � ⇢u,(t�1))

= (�in
m,u,t � �out

m,u,t), t > 1, (12c)

where hm,u,t is the nominal linepack in the pipeline in case
perfect forecasts of wind power production were to be realized.
It is worth noting that, considering the initial linepack amount
H0

m,u is uncertainty-independent, constraint (2s) decomposes
solely as (12a). Whereas the linepack amount in hours t > 1,
given by (2t), decomposes as nominal (12b) and uncertainty-
dependent (12c) equalities, which govern the change in nom-
inal linepack amount and the response to uncertainty during
real-time operation, respectively.

F. Power and Natural Gas Coordination with Affine Policies
In the following we present a finite-dimensional solvable

approximation of the stochastic program (2), under the strategy
of affine response to uncertainty. As shown in Fig. 1, this day-
ahead problem is solved by a central system operator.

min
�2

X

t2T

⇣ X

i2C
CE

i pi,t +
X

k2K
CG

k gk,t

⌘
(13a)

subject to

min
P2�

P[pi,t + (e>�t)↵i,t � P i] � (1 � ✏i), 8i, 8t, (13b)

min
P2�

P[pi,t + (e>�t)↵i,t  P i] � (1 � ✏i), 8i, 8t, (13c)

min
P2�

P[gk,t + (e>�t)�k,t � Gk] � (1 � ✏k), 8k, 8t, (13d)

min
P2�

P[gk,t + (e>�t)�k,t  Gk] � (1 � ✏k), 8k, 8t, (13e)

min
P2�

P[prm,t + (e>�t)⇢m,t � PRm] � (1 � ✏m), 8m, 8t, (13f)

min
P2�

P[prm,t + (e>�t)⇢m,t  PRm]

� (1 � ✏m), 8m, 8t, (13g)
min
P2�

P[(pru,t � �m,u prm,t) + (e>�t)(⇢u,t (13h)

� �m,u ⇢m,t)  0] � (1 � ✏mu), 8(m, u) 2 Zc, 8t, (13i)

min
P2�

P[qm,u,t + (e>�t)�m,u,t � 0]

� (1 � ✏mu), 8(m, u) 2 Z, 8t, (13j)
min
P2�

P[qin
m,u,t + (e>�t)�

in
m,u,t � 0]

� (1 � ✏mu), 8(m, u) 2 Z, 8t, (13k)
min
P2�

P[qout
m,u,t + (e>�t)�

out
m,u,t � 0]

� (1 � ✏mu), 8(m, u) 2 Z, 8t, (13l)

min
P2�

P[hm,u,t + Sm,u(e>�t)
⇢m,t + ⇢u,t

2
� H0

m,u]

� (1 � ✏mu), 8(m, u) 2 Z, t = |T |, (13m)
(2c) - (2e), (5), (7), (8), (11), (12), (13n)

where the optimization variables are ⇥2 = { pi,t, ↵i,t, gk,t,
�k,t, prm,t, ⇢m,t, qm,u,t, �m,u,t, qin

m,u,t, �in
m,u,t, qout

m,u,t, �out
m,u,t,

hm,u,t}. The expectation term in objective (2a) reduces to
(13a) on account of the zero-mean assumption of �t. As
discussed in [16] for programs with a similar structure, the
stochastic program (13) is computationally intractable due
to the probabilistic distributionally robust chance constraints.
To achieve tractability, a convex second-order cone (SOC)
approximation of the non-convex individual distributionally
robust chance constraints is adopted. Furthermore, the non-
convex quadratic equality constraints (11) representing the
Weymouth equation for the uncertainty-aware gas flows re-
quire convexification. The approach towards solving (13) along
with its final tractable form is discussed in the next section.

III. SOLUTION APPROACH

A. SOC Reformulation of Probabilistic Constraints
For distributionally robust individual chance constraints

under the assumption of known first and second-order mo-
ments of the underlying probability distribution, [17, Theorem
2.2] provides a SOC approximation based on a variant of
Chebyshev’s Inequality. While interested readers are directed
to [17] for a proof, convex reformulation of constraint (13c)
is presented below as an illustration.

With ⌃�
t 2 R|J |⇥|J | as the t-th diagonal sub-matrix of the

covariance matrix ⌃� in time period t and e 2 R|J | denoting
a vector of all ones, the probabilistic chance constraints (13c)
can be approximated by the following SOC constraints:

�
1 � ✏i

✏i

���↵i,te
>(⌃�

t )1/2
���

2
 �pi,t + P i, 8i, 8t. (14)

Similar reformulation is performed for the other distribution-
ally robust chance constraints in (13). References [18] and [19]
remark that such conic reformulation based on Chebyshev’s
Inequality results in over-conservative solutions as ✏i ! 0
while approaching infeasibility for ✏i ⇡ 0. Exact reformulation
of such chance constraints improving on this issue has been
recently proposed in [18]. However, since the focus of this
work is on uncertainty-aware coordination between electricity
and natural gas systems, our formulation is limited to the conic
approximation. We ensure that large enough risk measures
✏(·) are considered in the case study (Section IV) such that
infeasibility is avoided.
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TABLE I
VARIABLE BOUNDS FOR MCCORMICK RELAXATION.

Variable Lower bound Upper bound

prm,t PRm PRm

�m,t �(PRm � PRm)/�W (PRm � PRm)/�W
qm,u,t 0 Q

�m,u,t �Q/�W Q/�W

B. Convex Relaxation of Weymouth Equation

The non-convex quadratic equality constraints in (11a) can
be equivalently written as

q2
m,u,t  K2

m,u(pr2
m,t � pr2

u,t), 8(m, u) 2 Z, 8t, (15a)
q2
m,u,t � K2

m,u(pr2
m,t � pr2

u,t), 8(m, u) 2 Z, 8t. (15b)

To relax (11a), we adopt the convex SOC constraints (15a) and
drop the non-convex constraints (15b)4. The tightness of this
relaxation is analyzed in [20] and will be further examined
in Section IV. Note that (11b) can be convexified in the
same manner. However, this convexification strategy cannot
be applied to (11c). We adopt McCormick relaxation [21],
defining rectangular envelopes around the bi-linear terms in
(11c) based on the known and estimated bounds on variables.
We first define auxiliary variables ⌫m,t for gas nodes m 2 M
and �m,u,t for the pipelines (m, u) 2 Z, 8t and then replace
(11c) by the following set of constraints:

�m,u,t � K2
m,u⌫m,t + K2

m,u⌫u,t = 0, 8(m, u) 2 Z, 8t, (16a)
�m,u,t = qm,u,t�m,u,t, 8(m, u) 2 Z, 8t, (16b)
⌫m,t = prm,t⇢m,t, 8m, 8t, (16c)
⌫u,t = pru,t⇢u,t, 8u : (m, u) 2 Z, 8t. (16d)

To illustrate the McCormick relaxation, the inequalities that
replace the non-convex constraints (16c) are

8m, t

8
>>><

>>>:

⇢L
m,tprm,t + prL

m,t⇢m,t  ⌫m,t + prL
m,t⇢

L
m,t

⇢U
m,tprm,t + prU

m,t⇢m,t  ⌫m,t + prU
m,t⇢

U
m,t

⇢L
m,tprm,t + prU

m,t⇢m,t � ⌫m,t + prU
m,t⇢

L
m,t

⇢U
m,tprm,t + prL

m,t⇢m,t � ⌫m,t + prL
m,t⇢

U
m,t,

(17)

where superscripts L and U indicate lower and upper bounds
of the variables, respectively. Constraints (16b) and (16d) are
treated similarly. The variable bounds used to construct the
McCormick envelopes are listed in Table I. Parameter �W is
the total installed wind capacity in the system and parameter
Q denotes the upper bound on gas flow in the pipelines, which
we obtain by solving a deterministic version of problem (2)
with e

>�t = 0. The bounds for network response variables,
�m,u,t and ⇢m,u,t are trivially deduced from equations (6a)
and (9), respectively.

Following the convex approximation of probabilistic con-
straints and relaxation of Weymouth equations, the tractable

4Linear approximations of the dropped non-convex constraints, as proposed
by [1] in a deterministic setting, may also be included to the problem.

form of the distributionally robust chance-constrained day-
ahead coordinated power and natural gas dispatch is presented
in Appendix A. Problem (20) is a convex second-order cone
program (SOCP) and is solvable using off-the-shelf convex
optimization solvers.

IV. CASE STUDY

A. Input Data
A coupled power and natural gas system consisting of a

12-node gas network connected to the IEEE 24-bus reliability
test system [5] is used to evaluate our proposed coordinated
dispatch. The installed wind capacity reaches one-thirds of
the peak demand in the simulation horizon of 24 hours. Data
for the parameters of the power and natural gas networks
and for the operational characteristics of all assets in the
system are provided in online appendix [22]. A dataset of
1,000 zero-mean wind forecast error scenarios based on actual
measurements recorded in Western Denmark [23] is used to
empirically estimate the covariance matrix ⌃�. The param-
eters ✏(·) for all distributionally robust chance constraints in
(20) are set to identical values.

The problem is implemented in Julia v1.1.1 modeled with
JuMP v0.2 and solved to optimality by Mosek v9.0 with an
average CPU time of 1.67 seconds on a personal computer
with 8GB memory running on Intel Core i5 clocked at 2.3
GHz. The optimal solution provides nominal dispatch schedule
as well as affine policies that quantify the response to uncertain
wind realizations during real-time.

B. Optimal Affine Policies
In Fig. 2, we show the optimal allocations from the dis-

tributionally robust chance-constrained day-ahead coordinated
power and natural gas model (20) for violation probabilities
✏(·) set to 0.05. Fig. 2(a) shows the nominal dispatch of NGF-
PPs and non-NGFPPS to meet the forecasted net electricity
demand, i.e., load minus wind production forecast, while Fig.
2(b) shows their affine responses to uncertainty. Similarly,
Figs. 2(c)-(d) present the nominal schedule and the response
policies for the three gas suppliers. We highlight our main
observations in the following.

First, when power producers and gas suppliers are either
dispatched not at all or at full capacity, they are not eligible to
adjust their output to mitigate uncertainty. Thus, the response
policies for these units are zero. As a result, expensive
generators, which are not dispatched in hours with low net
demand, are assigned zero ↵i in these hours. Similarly, the
most expensive gas supplier (k3) is not expected to respond to
uncertainty in hours 1-13, while not dispatched. On the other
hand, the least expensive gas supplier (k1) cannot provide a
response to uncertainty in hours 1-10, because her nominal
dispatch is already at maximum capacity.

Second, NGFPPs are the main providers of flexibility in
response to wind uncertainty during hours 8-24, see Fig. 2(b).
Although the volatility of gas demand from NGFPPs can
be mitigated by linepack, gas suppliers are also required to
respond to uncertainty, especially in hours 14-24, see Fig. 2(d).
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Fig. 2. Optimal dispatch and affine policies for �(·) = 0.05 for the simulation
horizon of 24 hours.

Not only the availability and cost structure of power and gas
supply, but also network effects impact the optimal response.
The spatial correlations of uncertain wind forecasts and loca-
tion of flexibility providers in both power and gas networks
affect the response policies. An example of network effects is
the allocation of affine policies in hour 4 in Fig. 2(b). Here,
flexibility is provided not only with respect to cost efficiency,
but also considering locational benefits and preferable energy
flow effects.

C. Choice of Violation Probabilities ✏(·)
To evaluate the quality of the solution obtained and to make

an informed choice for ✏(·), we perform ex-ante simulations
using a test dataset of wind realization scenarios, distinct
from those used to estimate the covariance matrix. With
fixed day-ahead decisions, i.e., nominal production schedules
and affine policies, we compute the violation probability of
the distributionally robust chance constraints (13b)-(13m) and
(2d)-(2e) for a choice of ✏(·) as

⌘� =
1

Ns

NsX

s=1

Is. (18)

The indicator function Is takes a value 1 if at least one of these
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Fig. 3. Day-ahead dispatch cost (left y-axis) with values of �(·) chosen for
the distributionally robust chance constraints is shown by line with markers .
The ex-ante violation probability (right y-axis) of these constraints, evaluated
for 1,000 test samples, is shown in bars.

constraints is violated for the wind realization that corresponds
to scenario s. Referring to the left-hand y-axis, the lineplot
in Fig. 3 shows the expected cost of day-ahead dispatch
at various values of confidence levels (1 � ✏(·)) imposed
on the probabilistic constraints. With a higher confidence
of meeting the constraints, the expected cost of day-ahead
dispatch increases. The bars, which refer to the right-hand
y-axis, show the ex-ante violation probability computed at
selected confidence level values. For ✏(·) = 0.05, an ex-
ante violation probability of 0.003 is expected at a day-ahead
expected dispatch cost of $1,580,000.

D. Ex-Ante Violation Probabilities
Next, we analyse the violation probabilities (18) for each

of the following chance-constraints: I. generator bounds (13b)
and (13c), II. line flow limits (2d) and (2e), III. non-depletion
of linepack in pipelines requirement (13m), IV. natural gas
flow direction constraints (13j)-(13l), V. nodal gas pressure
bounds (13f) and (13g), and VI. gas supplier bounds (13d)
and (13e). Fig. 4 shows the probability of violation of these
individual constraints for different choices of ✏(·).

Power generation limits (13b) and (13c) are most susceptible
to violation at all values of ✏(·). Power transmission lines
are not prone to reaching their operational limits. We do not
observe any violation probability of power flow limits until
decreasing the confidence level to 0.75. On the gas side, the
constraints of gas flow directions (13j)-(13l) are susceptible
to violations, causing the dependent nodal pressure limits
(13f) and (13g) to be violated as well. On the one hand,
this can be explained by the relaxation gap for the gas flow
equations, which is discussed in detail in the following. On
the other hand, this motivates future work to consider bi-
directional gas flows, specially in the context of flexibility
provision by linepack, albeit at the cost of losing convexity
due to introduction of integer variables. The non-depletion of
linepack constraints are, however, satisfied even at ✏(·) = 0.25.
This indicates that there is enough short-term gas storage
available in the gas pipelines such that they are not depleted
at the end of the day while providing flexibility to the power
system. Notably, these outcomes and resulting inferences are
system-specific.
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(c) McCormick Relaxation of (11c)
Fig. 5. Normalized relaxation gap for the convex relaxations adopted for
Weymouth equation in (11) for �(·) = 0.05.

E. Tightness of Convex Relaxations
We examine the tightness of the relaxation for the non-

convex Weymouth equation (11) by comparing the left-hand
and right-hand sides of each of these equality constraints. We
define the normalized root mean square relaxation gap ⌅ for
the original equality constraint Xm,u,t = Ym,u,t, 8(m, u) 2
Z, 8t relaxed to Xm,u,t  Ym,u,t, 8(m, u) 2 Z, 8t as

⌅ =

"
1

|Z||T |
X

t2T

X

z2Z

✓
Y ⇤

m,u,t � X⇤
m,u,t

Y ⇤
m,u,t

◆2
# 1

2

, (19)

where superscript � indicates values obtained at optimality.
For ✏(·) = 0.05, we observe a ⌅-value of 0.78, 1.67 and 2.87
for (11a), (11b) and (11c), respectively.

Fig. 5 presents heatmaps of the normalized root mean square
relaxation gap ⌅ for each gas pipeline in each hour of the sim-
ulation horizon for ✏(·) = 0.05. The occurrence of relaxation
gap is lower for constraint (11a) than for (11b). While the
relaxation of constraint (11a) seems to be sufficiently tight in
Fig. 5(a), the relaxation of (11b) is not always exact, see Fig.
5(b). The relaxation gap is particularly extant in hours 1-6. The
structure of the gas network, which is non-radial and cyclical,
and the inter-temporal dynamics of linepack contribute to the

lack of tightness of the relaxations. Conditions for exactness
of the relaxation of the Weymouth equation can be found
in [20] and [24], while approaches for tightening these SOC
relaxations are proposed in [1] and [25]. For the McCormick
relaxation of constraint (11c) the relaxation gap occurs very
frequently and with high severity, see Fig. 5(c). Adversely
negative values of � and/or ⇢ in the bilinear terms lead to
normalized relaxation gaps even larger than 1. Improvements
on this approach, such as iterative tightening of the bounds or
by convex quadratic enhancement of McCormick relaxation as
proposed in [26], will be considered in future works. However,
in the context of the proposed coordinated day-ahead dispatch,
the tightness of the relaxation is of limited importance, since
an additional gas flow feasibility problem [24] is expected to
be solved closer to real-time by the gas network operator.

V. CONCLUSION AND FUTURE PERSPECTIVES

A. Conclusion
We proposed a distributionally robust chance-constrained

coordination of power and natural gas systems to study the
propagation of uncertainty from the power to the gas side.
Our tractable reformulation of the stochastic program, using
recourse actions from the flexible agents in the coupled system
and adopting a simplified model for real-time gas flows and
nodal pressures, results in a convex SOCP. Ex-ante out-of-
sample evaluations are used to demonstrate the quality of
the solution while highlighting a trade-off between dispatch
cost and violation probability, which influences the choice of
allowable violation probabilities. The proposed coordination
model enables efficient harnessing of short-term flexibility
from the assets in natural gas networks for power systems
facing uncertainty. Analysis of the optimal affine policies
highlights that our proposed approach enables cost-efficient
dispatch and allocation of flexibility across energy sectors
facing spatio-temporal effects of uncertainty.

B. Future Perspectives
For future works, detailed out-of-sample simulation studies

should be undertaken to better understand the quality of
optimal affine responses. Studying the impact of the response
policies on the feasibility of the physical constraints of power
and natural gas networks in real-time operation and testing
the severity of allowed constraint violations are of interest.
Convexity-preserving algorithms that tighten the relaxation of
gas flow equations can be employed in future works. Further,
power-to-gas units that provide additional inter-sectoral flexi-
bility could be included in the model.

Analyzing the proposed coordination in a market context
wherein payments for the provision of flexibility-as-a-service
are considered, is an interesting topic to investigate in future.
Moreover, the impact of limited information sharing among
sectors as opposed to the central dispatch considered in this
work would be highly insightful. Finally, a market clearing
mechanism involving auctions that elicit flexibility from the
natural gas sector is a viable pathway towards real-world
implementation that is opened up by this paper.
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APPENDIX A
The final tractable form of the proposed distributionally

robust chance-constrained coordination of power and natural
gas systems is the SOCP presented below:

min
�2[{�m,u,t, �m,t}

X

t2T

⇣ X

i2C
CE

i pi,t +
X

k2K
CG

k gk,t

⌘
(20a)

subject to

⇠i

����↵i,te
>(⌃�

t )1/2
���

2
 pi,t � P i, 8i, 8t, (20b)

⇠i

���↵i,te
>(⌃�

t )1/2
���

2
 �pi,t + P i, 8i, 8t, (20c)

⇠nr

���{ ( I↵te
> � J)}(n,r)(⌃

�
t )1/2

���
2

 {F

+ ( DD
E
t � Ipt � JW

PF
t )}(n,r), 8(n, r) 2 L, 8t, (20d)

⇠nr

����{ ( I↵te
> � J)}(n,r)(⌃

�
t )1/2

���
2

 {F

� ( DD
E
t � Ipt � JW

PF
t )}(n,r), 8(n, r) 2 L, 8t, (20e)

⇠k

�����k,te
>(⌃�

t )1/2
���

2
 gk,t � Gi, 8k, 8t, (20f)

⇠k

����k,te
>(⌃�

t )1/2
���

2
 �gk,t + Gi, 8k, 8t, (20g)

⇠m

����⇢m,te
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t )1/2
���

2
 prm,t � PRm, 8m, 8t, (20h)
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���⇢m,te
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t )1/2
���

2
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���
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McCormick envelopes of (16b) and (16d), (20p)
(12), (7), (5), (15a), (16a), (17), (20q)

where ⇠i =
�

1��i
�i
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�

1��nr
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�

1��k
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, ⇠m =
�
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�
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are parameters.
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Stochastic Control and Pricing for Natural Gas Networks
Vladimir Dvorkin, Anubhav Ratha, Pierre Pinson and Jalal Kazempour

Abstract—We propose stochastic control policies to cope with
uncertain and variable gas extractions in natural gas networks.
Given historical gas extraction data, these policies are optimized
to produce the real-time control inputs for nodal gas injections
and for pressure regulation rates by compressors and valves. We
describe the random network state as a function of control inputs,
which enables a chance-constrained optimization of these policies
for arbitrary network topologies. This optimization ensures the
real-time gas flow feasibility and a minimal variation in the
network state up to specified feasibility and variance criteria.
Furthermore, the chance-constrained optimization provides the
foundation of a stochastic pricing scheme for natural gas net-
works, which improves on a deterministic market settlement
by offering the compensations to network assets for their con-
tribution to uncertainty and variance control. We analyze the
economic properties, including efficiency, revenue adequacy and
cost recovery, of the proposed pricing scheme and make them
conditioned on the network design.

Index Terms—Chance-constrained programming, conic dual-
ity, gas pricing, natural gas network, uncertainty, variance.

I. INTRODUCTION

Deterministic operational and market-clearing practices of
the natural gas network operators struggle with the growing
uncertainty and variability of natural gas extractions [1].
Ignorance of the uncertain and variable extractions results
in technical and economical failures, as demonstrated by the
congested network during the 2014 polar vortex event in the
United States [2]. The recent study [3] shows that expanding
the network to avoid the congestion is financially prohibitive,
which encourages us to develop stochastic control policies to
gain gas network reliability and efficiency in a short run.

Since the prediction of gas extractions involves errors, a
gas network optimization problem has been addressed using
the methods from robust optimization [4], scenario-based
and chance-constrained stochastic programming [5]. Besides
forecasts, they require a network response model to uncer-
tainty, i.e., the mapping from random forecast errors to the
network state. The robust solutions [6] optimize the network
response to ensure the feasibility within robust uncertainty
sets, but result in overly conservative operational costs. To
alleviate the conservatism, scenario-based stochastic programs
[7] optimize the network response to provide the minimum
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expected cost and ensure feasibility within a finite number of
discrete scenarios. The major drawback of robust and scenario-
based programs is their ignorance of the network state within
the prescribed uncertainty set or outside the chosen scenarios.
The chance-constrained programs [8], [9], in turn, yield an
optimized network response across the entire forecast error
distribution (or a family of those [10]), thus resulting in more
advanced prediction and control of uncertain network state.

This work advocates the application of chance-constrained
programming to the optimal natural gas network control under
uncertainty. By optimal control, we imply the optimization of
gas injection and pressure regulation policies that ensure gas
flow feasibility and market efficiency for a given forecast error
distribution. Towards this goal, we require a network response
model with a strong analytic dependency between the network
state and random forecast errors. Since natural gas flows are
governed by non-convex equations, the design of network
response models reduces to finding convex approximations.
The work in [8, Chapter 6] enjoys the so-called controllable
flow model [11], which balances gas injection and uncertain
extractions but disregards pressure variables. It thus does
not permit policies for pressure control and corresponding
financial remunerations. The work in [9] preserves the integrity
of system state variables and relies on the relaxation of non-
convex equations. Although the relaxations are known to be
tight [12], [13], the results of [9] show that even a marginal
relaxation gap yields a poor out-of-sample performance of
the chance-constrained solution. Furthermore, the relaxations
involve the integrality constraints to model bidirectional gas
flows, which prevents extracting the dual solution and thus de-
signing an optimal pricing scheme. One needs to introduce the
unidirectional flow assumption to avoid integrality constraints,
which is restrictive for gas networks under uncertainty [9].

This work bypasses the simplifying assumptions on network
operations through the linearization of the non-convex natural
gas equations, and provides a convex stochastic network opti-
mization problem with performance guarantees. The problem
ensures the real-time gas flow feasibility, enables the control
of network state variability, and provides an efficient pricing
scheme. Specifically, we make the following contributions:

1) We propose stochastic control policies for gas injections
and pressure regulation rates that provide real-time con-
trol inputs for network operators. Through linearization,
we describe the uncertain state variables, such as nodal
pressures and flow rates as affine functions of control
inputs; thus capturing the dependency of the uncertain
network state on operator’s decisions. To establish perfor-
mance guarantees, we provide a sample-based method to
bound approximation errors induced due to linearization.

2) We introduce a chance-constrained program to optimize
the control policies and provide its computationally effi-
cient second-order cone programming (SOCP) reformu-
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lation. The policy optimization ensures that the network
state remains within network limits with a high prob-
ability and utilizes the statistical moments of the state
variables to trade-off between the expected cost and the
variance of the state variables.

3) We propose a conic pricing scheme that remunerates net-
work assets, i.e., gas suppliers, compressors and valves,
for their contribution to uncertainty and variance control.
Unlike the standard linear programming duality, the conic
duality enables the decomposition of revenue streams
associated with the coupling chance-constraints. We ana-
lyze the economic properties of the conic pricing scheme,
e.g. revenue adequacy and cost recovery, and make them
conditioned on the network design.

At the operational planning stage, the optimized policies
provide the best approximation (up to forecast quality) of
the real-time control actions. They can be augmented into
preoperational routines of network operators within the deter-
ministic steady-state [13] or transient [14], [15] gas models
in the form of gas injection and pressure regulation set-
points, while providing the strong foundation for necessary
financial remunerations. We corroborate the effectiveness of
the proposed policies using a 48-node natural gas network.

Outline: Section II explains the gas network modeling,
while Section III describes the stochastic network optimiza-
tion, control policies and tractable reformulations. Section IV
introduces the pricing scheme and its theoretical properties.
Section V provides numerical experiments, and Section VI
concludes. All proofs are relegated to Appendix.

Notation: Operation � is the element-wise vector (matrix)
product. Operator diag[x] returns an n ⇥ n diagonal matrix
with elements of vector x 2 Rn. For a n ⇥ n matrix A, [A]i
returns an ith row (1 ⇥ n) of matrix A, hAii returns an ith

column (n ⇥ 1) of matrix A, and Tr[A] returns the trace of
matrix A. Symbol > stands for transposition, vector 1 (0) is
a vector of ones (zeros), and k·k denotes the Euclidean norm.

II. PRELIMINARIES

A. Gas Network Equations
A natural gas network is modeled as a directed graph

comprising a set of nodes N = {1, . . . , N} and a set of
edges E = {1, . . . , E}. Nodes represent the points of gas
injection, extraction or network junction, while edges represent
pipelines. Each edge is assigned a direction from sending node
n to receiving node n0, i.e., if (n, n0) 2 E , then (n0, n) /2 E .
The graph may contain cycles, while parallel edges and self-
loops should not exist. The graph topology is described by a
node-edge incidence matrix A 2 RN⇥E , such that

Ak` =

8
<

:

+1, if k = n
�1, if k = n0

0, otherwise
8` = (n, n0) 2 E .

Let ' 2 RE be a vector of gas flow rates and let � 2 RN
+ be

a vector of gas extractions, which must be satisfied by the gas
injections # 2 RN across the network given their injection
limits #,# 2 RN

+ . The gas conservation law is thus

A' = #� �.

The gas flow rates in network edges relate to the nodal pres-
sures through non-linear, partial differential equations [16].
Under steady-state assumptions [13], however, the flows are
related to pressures through the Weymouth equation:

'`|'`| = w`

�
%2

n � %2
n0

�
, 8` = (n, n0) 2 E ,

where % 2 RN is a vector of pressures contained within
technical limits %, % 2 RN

+ , and w 2 RE
+ are constants that

encode the friction coefficient and geometry of pipelines. To
avoid non-linear pressure drops, let ⇡n = %2

n be the squared
pressure at node n with limits ⇡n = %2

n
and ⇡n = %2

n.
To support the desired nodal pressures, the gas network

operator regulates the pressure using active pipelines Ea ⇢ E ,
which host either compressors Ec ⇢ Ea or valves Ev ⇢ Ea, as-
suming Ec\Ev = ;. These network assets respectively increase
and decrease the gas pressure along their corresponding edges.
To rewrite the gas conservation law and Weymouth equation
accounting for these components, let  2 RE be a vector
of pressure regulation variables. Pressure regulation is non-
negative ` > 0 for every compressor edge ` 2 Ec and it is
non-positive ` 6 0 for every valve edge ` 2 Ev . This informa-
tion is encoded in the pressure regulation limits , 2 RE .
Pressure regulation involves an additional extraction of the
gas mass to fuel active pipelines. Let matrix B 2 RN⇥E

relate the active pipelines to their sending nodes accounting
for conversion factors, i.e.,

Bk` =

8
<

:

b`, if k = n, k 2 Ec

�b`, if k = n, k 2 Ev

0, otherwise
8` = (n, n0) 2 E ,

where b` is a conversion factor from the gas mass to the
pressure regulation rate. The network equations become

A' = #� B� �, (1a)
' � |'| = diag[w](A>⇡ + ), (1b)
'` > 0, 8` 2 Ea. (1c)

Here, the gas extraction B by compressor and valve edges in
(1a) is always non-negative. Equation (1b) is the Weymouth
equation in a vector form that accounts for both pressure loss
and pressure regulation. The absolute value operator in (1b)
is understood element-wise. Finally, equality (1c) enforces the
unidirectional condition for the gas flow in active pipelines,
because they permit the gas flow only in one direction.

B. Deterministic Gas Network Optimization
The gas network optimization seeks the minimum of gas

injection costs while satisfying gas flow equations and network
limits. Let c1 2 RN

+ and c2 2 RN
+ be the coefficients of a

quadratic gas injection cost function. With a perfect extraction
forecast, the deterministic gas network optimization is

min
#,,',⇡

c>
1 #+ #>diag[c2]# (2a)

s.t. A' = #� B� �, (2b)
' � |'| = diag[w](A>⇡ + ), (2c)
⇡ 6 ⇡ 6 ⇡, # 6 # 6 #, (2d)
 6  6 , '` > 0, 8` 2 Ea. (2e)
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Despite the non-convexity of (2), it has been solved suc-
cessfully using algorithmic solvers [13], [17] or general-
purpose solvers [18] when all optimization parameters are
known. These solvers no longer apply when the parameters are
uncertain, because one needs to establish a convex dependency
of optimization variables on uncertain parameters [19]. This
convex dependency is established in this work by means of
the linearization of the Weymouth equation (2c).

C. Linearization of the Weymouth Equation
Let W(',⇡,) = 0 denote the non-convex constraint (2c),

and let J (x) 2 RE⇥n denote the Jacobian of (2c) w.r.t. an
arbitrary vector x 2 Rn. The relation between the gas flow
rates, nodal pressures, and pressure regulation rates can thus
be approximated by the first-order Taylor series expansion:

W(',⇡,) ⇡W('̊, ⇡̊, ̊) + J ('̊)('� '̊)

+ J (̊⇡)(⇡ � ⇡̊) + J (̊)(� ̊) = 0, (3)

where ('̊, ⇡̊, ̊) is a stationary point retrieved by solving non-
convex problem (2). As W('̊, ⇡̊, ̊) = 0 at a stationary point,
equation (3) implies the affine relation:

'� '̊ = J ('̊)�1J (̊⇡)(̊⇡ � ⇡) + J ('̊)�1J (̊)(̊� )

, ' = J ('̊)�1(J (̊⇡)̊⇡ + J (̊)̊) + '̊

�1('̊,̊⇡,̊)

�J ('̊)�1J (̊⇡)

�2('̊,̊⇡)

⇡ �J ('̊)�1J (̊)

�3('̊,̊)



, ' = �1('̊, ⇡̊, ̊) + �2('̊, ⇡̊)⇡ + �3('̊, ̊), (4)

where �1 2 RE , �2 2 RE⇥N and �3 2 RE⇥E are coefficients
encoding the sensitivity of gas flow rates to pressures and
pressure regulation rates. These coefficients depend on the sta-
tionary point. For notational convenience, this dependency is
dropped but always implied. In what follows, the Greek letter
� denotes sensitivity coefficients and their transformations.

Remark 1 (Reference node): Since rank(�2) = N � 1,
system (4) is rank-deficient. Since the graph is connected, we
have E > N � 1, thus resulting in infinitely many solutions
to system (4). A unique solution is obtained by choosing a
reference node (r) and fixing the reference pressure ⇡r = ⇡̊r.
The reference node does not host a variable injection or
extraction, nor should be a terminal node of active pipelines. In
practice, this is a node with a large and constant gas injection.

III. GAS NETWORK OPTIMIZATION UNDER UNCERTAINTY

A. Chance-Constrained Formulation
At the operational planning stage, well ahead of the real-

time operations, the unknown gas extractions are modeled as

�̃(⇠) = � + ⇠, (5)

where � 2 RN is the mean value of the gas withdrawal rates
and ⇠ 2 RN is a vector of zero-mean random forecast errors.
Equation (5) suffices to model disturbances in gas extractions
without an explicit modeling of gas consumption by gas-fired
power plants in adjacent electrical power grids. We assume

that the forecast error distribution P⇠ of ⇠ and covariance
⌃ = E[⇠⇠>] can be estimated from the historical observations
of electrical loads and renewable power generation, that are
known to obey Normal, Log-Normal and Weibull distributions
[20]. Though, more complex distributions may be envisaged
for double-bounded stochastic processes of interest.

Regardless of the type and parameters of the uncertainty
distribution, the chance-constrained counterpart of the deter-
ministic gas network optimization in (2) writes as

min
#̃,̃,'̃,⇡̃

EP⇠ [c>
1 #̃(⇠) + #̃(⇠)>diag[c2]#̃(⇠)] (6a)

s.t.

P⇠

2

64
A'̃(⇠) = #̃(⇠) � B̃(⇠) � �̃(⇠),

'̃(⇠) = �1 + �2⇡̃(⇠) + �3̃(⇠),

⇡̃r(⇠) = ⇡̊r

3

75 a.s.
= 1, (6b)

P⇠

"
⇡ 6 ⇡̃(⇠) 6 ⇡, # 6 #̃(⇠) 6 #,

 6 ̃(⇠) 6 , '̃`(⇠) > 0, 8` 2 Ea

#
> 1 � ", (6c)

which optimizes stochastic network variables #̃, ̃, '̃ and ⇡̃ to
minimize the expected value of the cost function (6a) subject
to probabilistic constraints. The almost sure (a.s.) constraint
(6b) requires the satisfaction of the gas conservation law and
linearized Weymouth equation with probability 1, while the
chance constraint (6c) ensures that the real-time pressures
together with the injection, pressure regulation and flow rates
remain within their technical limits. The prescribed violation
probability " 2 (0, 1) reflects the risk tolerance of the gas
network operator towards the violation of network limits.

B. Control Policies and Network Response Model

The chance-constrained problem (6) is computationally in-
tractable as it constitutes an infinite-dimensional optimization
problem. To overcome its complexity, it has been proposed to
approximate its solution by optimizing stochastic variables as
affine, finite-dimensional functions of the random variable [4].
This functional dependency constitutes the model of the gas
network response to uncertainty.

The explicit dependency on uncertainty is enforced on the
controllable variables through the following affine policies

#̃(⇠) = #+ ↵⇠, ̃(⇠) = + �⇠, (7a)

where # and  are the nominal (average) response, while
↵ 2 RN⇥N and � 2 RE⇥N are variable recourse decisions of
the gas injections and pressure regulation by active pipelines,
respectively. When optimized, policies (7a) provide control
inputs for the network operator to meet the realization of
random forecast errors ⇠. As the state variables, such as flow
rates and pressures, are coupled with the controllable variables
through stochastic equations (6b), they implicitly depend on
uncertainty through the control inputs.

Lemma 1: Under control policies (7a), the random gas
pressures and flow rates are given by affine functions

⇡̃(⇠) = ⇡ + �̆2(↵� �̂3� � diag[1])⇠, (7b)
'̃(⇠) = '+ (�̀2(↵� diag[1]) � �̀3�)⇠, (7c)
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both including the nominal and random components, and
where �̆2, �̂2, �̀2, �̂3, �̀3 are constants of proper dimensions.

Equations (7) constitute the desired model of the network
response to uncertainty. The model is said to be admissible if
the stochastic gas conservation law and linearized Weymouth
equation in (6b) hold with probability 1, i.e., for any realization
of random variable ⇠. This is achieved as follows.

Lemma 2: The model of the gas network response (7) is
admissible if the nominal and recourse variables obey

A' = #� B� � (8a)
(↵� B�)>1 = 1, (8b)
' = �1 + �2⇡ + �3, (8c)
⇡r = ⇡̊r, [↵]>r = 0, [�]>r = 0. (8d)

Remark 2: The model of the gas network response (7) does
not make an assumption on the uncertainty distribution.

C. Expected Cost Reformulation
The expected value of the gas network cost function in (6a)

is computationally intractable as it involves an optimization
of infinite-dimensional random variable #̃(⇠). Under control
policy (7a), however, we show that the computation of the
expected cost reduces to solving an SOCP problem.

Due to definition of #̃(⇠), function (6a) rewrites as

EP⇠ [c>
1 (#+ ↵⇠) + (#+ ↵⇠)>diag[c2](#+ ↵⇠)],

where the argument of the expectation operator is separable
into nominal and random components. Due to the linearity of
the expectation operator, it equivalently rewrites as

c>
1 #+ #>diag[c2]#+ EP⇠ [c>

1 ↵⇠ + (↵⇠)>diag[c2]↵⇠].

A zero-mean assumption made on distribution P⇠ factors out
the first term under the expectation operator. The reformulation
of the second term is made recalling that the expectation of
the outer product of the zero-mean random variable yields its
covariance, i.e., E[⇠⇠>] = ⌃. Thus, the expected value of cost
function (6a) reduces to a computation of

c>
1 #+ #>diag[c2]#+ Tr[↵>diag[c2]↵⌃],

which is a convex quadratic function in variables # and ↵.
To bring it to an SOCP form, let vectors c# 2 RN and c↵ 2
RN substitute the quadratic terms of the gas injection and
recourse costs. Moreover, let F 2 RN⇥N be a factorization
of covariance matrix ⌃, such that ⌃ = FF>, and c̀2 2 RN be
the factorization of vector c2, such that diag[c2] = c̀2c̀>

2 . Then,
for any fixed values of nominal # and recourse ↵ decisions, the
expected value of the cost is retrieved by solving the following
SOCP problem

min
c#,c↵

c>
1 #+ 1>c# + 1>c↵ (9a)

s.t. kc̀2n#nk2 6 c#
n, 8n 2 N , (9b)

kF [↵]>n c2nk2 6 c↵
n, 8n 2 N , (9c)

where (9b) and (9c) are rotated second-order cone constraints.
Hence, the co-optimization of variables #,↵, c# and c↵ re-
sults in the minimal expected cost. As problem (9) acts on

a distribution-free response model (Remark 2), it does not
require any assumption on the uncertainty distribution.

D. Variance of State Variables
The optimization of response model (7) using the criterion

of the minimum expected cost involves the risks of producing
highly variable solutions for the state variables. See, for
example, the evidences in the power system domain [21], [22].
However, since the state variables (7b) and (7c) are affine in
control inputs, they can be optimized to provide the minimal-
variance solution. To achieve the desired result, however, it is
more suitable to optimize the standard deviations of the state
variables as they admit conic formulations.

Let s⇡ 2 RN and s' 2 RE be the variables modeling the
standard deviations of pressures and flow rates, respectively.
For any fixed values of recourse decisions ↵ and �, the
standard deviations of pressures and flows rates are retrieved
by solving the following SOCP problem

min
s⇡,s'

1>s⇡ + 1>s' (10a)

s.t. kF [�̆2(↵� �̂3� � diag[1])]>n k 6 s⇡
n, (10b)

kF [�̀2(↵� diag[1]) � �̀3�]>` k 6 s'
` , (10c)

8n 2 N , 8` 2 E ,

where (10b) and (10c) are second-order cone constraints,
which are tight at optimality. Therefore, the co-optimization of
variables ↵,�, s⇡ and s' yields the optimized system response
(7) that ensures the minimal-variance solution for the state
variables. We finally note that this co-optimization is also
distribution-free.

E. Tractable Chance-Constrained Formulation
It remains to reformulate the joint chance constraint (6c)

to attain a tractable reformulation. Given network response
model (7), one way to satisfy (6c) is to enforce all its N6
inequalities on a finite number of samples from P⇠ [23].
The sample-based reformulation, however, does not explicitly
parameterize the problem by the risk tolerance " of the
network operator. We thus proceed by enforcing individual
chance constraints with the explicit analytic parameterization
of the risk tolerance through individual violation probabilities
"̂ 2 R

N6
+ . This approach admits the Bonferroni approximation

of the joint chance constraint in (6c) when 1>"̂ 6 ". The
joint feasibility guarantee is provided even when the choice
of the individual violation probabilities is sub-optimal [24],
e.g. "̂i = "

N6
, 8i = 1, . . . , N6.

From [19] we know that a scalar chance constraint

P⇠[⇠
>x 6 b] > 1 � "̂ (11a)

analytically translates into the second-order cone constraint

z"̂kFxk 6 b � E⇠[⇠
>x], (11b)

where z"̂ > 0 is a safety parameter in the sense of [19],
and the left-hand side of (11b) is the margin that ensures
constraint feasibility given the parameters of the forecast errors
distribution. Consequently, larger safety parameter z"̂ improves
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system security. The choice of z"̂ depends on the knowledge
about distribution P⇠ [19], yet it always increases as the risk
tolerance "̂ reduces.

Given the network response model (7) and the reformu-
lations in (8)–(11), a computationally tractable version of
stochastic problem (6) with the variance awareness formulates
as the following SOCP problem:

min
P

c>
1 #+ 1>c# + 1>c↵ +  ⇡>s⇡ +  '>s' (12a)

s.t. �c : A' = #� B� �, (12b)
�r : (↵� B�)>1 = 1, (12c)
�w : ' = �1 + �2⇡ + �3, ⇡r = ⇡̊r, (12d)
�⇡

n : kF [�̆2(↵� �̂3� � diag[1])]>n k 6 s⇡
n, (12e)

�'
` : kF [�̀2(↵� diag[1]) � �̀3�]>` k 6 s'

` , (12f)
�⇡

n : z"̂kF [�̆2(↵� �̂3� � diag[1])]>n k 6 ⇡n � ⇡n, (12g)
�⇡

n : z"̂kF [�̆2(↵� �̂3� � diag[1])]>n k 6 ⇡n � ⇡n, (12h)

�
'

` : z"̂kF [�̀2(↵� diag[1]) � �̀3�]>` k 6 '`,
⇤ (12i)

z"̂kc̀2n#nk2 6 c#
n, (12j)

z"̂kF c̀2n[↵]>n k2 6 c↵
n, (12k)

z"̂kF [↵]>n k 6 #n � #n, (12l)
z"̂kF [↵]>n k 6 #n � #n, (12m)
z"̂kF [�]>` k 6 ` � `, (12n)
z"̂kF [�]>` k 6 ` � `, (12o)
8n 2 N , 8` 2 E , ⇤8` 2 Ea,

in variables P = {#,,',⇡,↵,�, c#, c↵, s⇡, s'}. Problem
(12) optimizes the system response model (7) to meet a trade-
off between the expected cost and the standard deviation of
the state variables up to the given penalties  ⇡ 2 RN

+ and
 ' 2 RE

+ for pressures and gas flow rates, respectively.
Notice, that the constraints on the optimal recourse with
respect to the reference node in (8d) are implicitly accounted
for through the conic constraints on the gas injection and
pressure regulation (12l)–(12o).

In formulation (12), the Greek letters � denote the dual
variables of the coupling constraints. In the next Section IV,
we invoke the SOCP duality theory to establish an efficient
pricing scheme for gas networks under uncertainty.

F. Approximation Errors and Performance Guarantees
Lemma 1 hypothesizes the linear dependency of state vari-

ables on random forecast errors. Although the linear depen-
dency enables a computationally tractable chance-constrained
optimization in (12), it also leads to approximation errors due
to non-convex relation between pressures, flows, and uncertain
gas extraction rates. To ensure that the optimization of control
policies in (7a) makes use of reliable state predictions, we
develop a priori worst-case performance guarantees that the
approximation errors do not exceed a certain threshold.

Since gas network congestions are mostly explained by
pressure limits, we specifically focus on approximation errors
associated with stochastic pressure variables. Let ⇡̃?(⇠) be the
vector of the optimized stochastic pressures in (7b), i.e.,

⇡̃?(⇠) = ⇡? + �̆2(↵
? � �̂3�

? � diag[1])⇠, (13)

which models the linear dependency on the optimal solution
of problem (12), denoted by ?, and random forecast error ⇠.

For some realization ⇠, let ⇡?(⇠) be the actual pressure
variables under control inputs from the optimized policies

#̃?(⇠) = #? + ↵?⇠, ̃?(⇠) = ? + �?⇠, (14)

where the optimal values are from the solution of problem
(12). Pressure variables ⇡?(⇠) can be then retrieved by project-
ing the optimized control inputs from (14) to the non-convex
feasible region specific to realization ⇠, i.e, by solving

⇡?(⇠) 2 argmin
#,,',⇡

k#̃?(⇠) � #k + k̃?(⇠) � k (15a)

s.t. A' = #� B� (� + ⇠), (15b)
' � |'| = diag[w](A>⇡ + ), (15c)
Constraints (2d) � (2e). (15d)

For any node n 2 N , the stochastic pressure approximation
error can be then pre-computed as an Euclidean distance

�⇡n(⇠) = k⇡̃?
n(⇠) � ⇡?

n(⇠)k (16)

between the approximation ⇡̃?
n(⇠) and the actual pressure

variable ⇡?
n(⇠) for some forecast error realization ⇠.

To provide the worst-case bound on the approximation error,
we formulate the following optimization problem

min
t

t (17a)

s.t. �⇡n(⇠) � t 6 0, 8⇠ 2 P⇠ (17b)

in single variable t, which identifies that realization ⇠ from
P⇠, that results in the largest distance between the linear
and non-convex stochastic pressure spaces. Observe, however,
that constraint (17b) is infinite as it requires infinitely many
samples from P⇠. Using a sample-based approach from [25],
we provide the following finite counterpart of (17)

min
t

t (18a)

s.t. �⇡n(b⇠s) � t 6 0, 8s = 1, . . . , S, (18b)

where b⇠s is a discrete sample from P⇠, and constraint (18b) is
enforced on a finite S number samples (sample complexity),
which is chosen to provide probabilistic performance guaran-
tees with high confidence, as per the following Lemma.

Lemma 3 (Adapted from Corollary 1 in [25]): For some
p 2 [0, 1] and v 2 [0, 1], if sample complexity S is such that

S > 1

pv
� 1,

then with probability (1�p) and confidence level (1�v), the
pressure approximation error at node n under the linear law in
(7b) will not exceed the optimal solution t? of problem (18).

IV. PRICING GAS NETWORKS UNDER UNCERTAINTY

From program (12), we know that network assets participate
in the satisfaction of the gas network equations (12b)–(12d),
in state variance reduction (12e)–(12f), and in ensuring the
feasibility of the state variables (12g)–(12i). In this section,
we establish a pricing scheme that remunerates network assets
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based on the combination of the classic linear programming
duality [26], [27] and the SOCP duality [22], [28]. We refer
the interested reader to Appendix C for a brief overview on
SOCP duality. For presentation clarity, however, we should
stress that for each second-order cone constraint in (12e)–
(12i) with a dual variable � 2 R1 there exists a vector
of dual prices u 2 RN , corresponding component-wise to
random vector ⇠ 2 RN , such that kuk 6 �. With a set of
prices �, u1, . . . , uN , each conic coupling constraint becomes
separable, thus enabling the revenue decomposition associated
with constraints (12e)–(12i).

We first show that the primal and dual solutions of program
(12) solve a partial competitive equilibrium. This equilibrium
consists of a price-setting problem that seeks the optimal
prices associated with the coupling constraints (12e)–(12i), a
set of profit-maximizing problems of gas suppliers n 2 N ,
active pipelines ` 2 Ea, and a rent-maximization problem
solved by the network operator, as we establish in the proof
of the following result; see Appendix D for details. Note, as
program (12) does not model consumer preferences explicitly,
we provide the results for partial equilibrium only.

Theorem 1 (Partial equilibrium payments): Let P and D be
the sets of the optimal primal and dual solutions of problem
(12), respectively. Then, both sets P and D solve a partial
competitive network equilibrium with the following payments:

• Each gas supplier n 2 N maximizes the expected profit
when receiving the revenue of Rsup

n as in (19a).
• Each active pipeline ` 2 Ea maximizes the expected profit

when receiving the revenue of Ract
` as in (19b).

• The network operator minimizes the expected network
congestion rent, which amounts to Rrent as in (19c).

• The payment of each consumer n 2 N is minimized
when they are charged with Rcon

n as in (19d).

Similarly to a deterministic market settlement, the nominal
gas injection or extraction is priced by associated locational
marginal price �c, while the nominal pressure regulation is
priced by the dual variable �w of the Weymouth equation.
The pricing scheme of Theorem 1, however, goes beyond the
deterministic payments and provides three additional revenue
streams for network assets (19). First, each network asset is
paid with the dual variable �r to remunerate its contribution
to the feasibility of the gas network equations for any real-
ization of uncertainty; see Lemma 2. The dual variables of
the reformulated chance constraints (12g)–(12i) are used to
compensate network assets for maintaining gas pressures and
flow rates within network limits. Observe, this revenue stream
is proportional to the safety parameter z"̂, which increases as
risk tolerance ✏̂ reduces. The last revenue streams for network
assets come from the satisfaction of the variance criteria set by
the network operator. From the stationarity conditions (28e)
from Appendix D, the variance prices are �⇡ =  ⇡ and
�' =  ', and from the SOCP dual feasibility condition (24)
from Appendix D we know that k[u⇡]nk 6 �⇡

n, k[u']`k 6 �'
` ,

8n 2 N , ` 2 E . Thus, these revenue streams are proportional
to the variance penalties  ⇡ and  ' set by the network
operator. The consumer charges, motivated by their individual
contributions to uncertainty and state variance, are explained

similarly. Finally notice that, in contrast to the deterministic
rent, revenue (19c) additionally includes the variance control
rent, which is non-zero whenever constraints (12e)–(12f) are
binding, i.e.,  ⇡, ' > 0.

The results of Theorem 1, and thus the equivalence between
the centralized optimization (12) and its equilibrium counter-
part (25)–(27), hold under certain assumptions. First, there
exists at least one strictly feasible solution to SOCP problem
(12) or to its dual counterpart to ensure that Slater’s condition
holds [28]. Second, the market is perfectly competitive and the
equilibrium agents act according to their true preferences, i.e.,
no exercise of market power. Finally, the information on the
uncertainty distribution must be consistent among equilibrium
problems [29]. Under these assumptions, we analyze the
revenue adequacy and cost recovery of payments (19) and
make them conditioned on the network design.

Corollary 1 (Revenue adequacy): Let �1 = 0 and ⇡ = 0.
Then, the payments established by Theorem 1 are revenue
adequate, i.e.,

PN
n=1 Rcon

n > PN
n=1 Rsup

n +
PE

`=1 Ract
` .

As a result, the natural gas system does not incur a financial
loss when the payments are distributed from consumers to
network assets. The first condition in Corollary 1 is motivated
by the linearization of the Weymouth equation. If �1 6= 0,
there exists an extra revenue term �w>�1. As consumers are
inelastic, this payment can be thus allocated to consumer
charges, however its distribution among the customers remains
an open question. Finally, the second condition in Corollary
1 allows pressures to be zero at network nodes, which is too
restrictive for practical purposes. In the next Section V we
show that the revenue adequacy holds in practice even when
this condition is not satisfied.

The surplus of consumer payments in Corollary 1 amounts
to the congestion rent minimized by the network operator;
see Appendix E for details. The consumer payments are
thus implicitly minimized by problem (12) to only cover the
congestion rent and compensate network assets for incurred
costs. With our last result, we show that the cost recovery for
network assets is also conditioned on the network design.

Corollary 2 (Cost recovery): Let # = 0, ` = 0, 8` 2 Ec,
and ` = 0, 8` 2 Ev . Then, the payments of Theorem 1 ensure
cost recovery for suppliers and active pipelines, i.e., Ract

` >
0, 8` 2 Ea, and Rsup

n � c1n#n � c#
n � c↵

n > 0, 8n 2 N .

V. NUMERICAL EXPERIMENTS

We run numerical experiments using a 48-node natural
gas network depicted in Fig. 1. The network parameters are
sourced from [30] with a few modifications to enable large
uncertainty and variability of gas extraction rates and provide
more variance control opportunities. Specifically, the pressure
limits at nodes 1 and 3 are homogenized with those at the
rest of network nodes, two injections are added in the demand
area at nodes 32 and 37, and two valves are installed in the
pipelines connecting nodes (28, 29) and (43, 44). The 22 gas
extractions are modeled as �̃(⇠) = � + ⇠, where � is the
nominal extraction rate reported in [30] and ⇠ is the zero-mean
normally distributed forecast error. The safety parameter z"̂ is
thus the inverse CDF of the standard Gaussian distribution
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Rsup
n , �c

n#n

nominal
balance

+ [�r
]
>

[↵]
>
n

recourse
balance

+ z"̂
�
h�̆2i>

n (u⇡
+ u⇡

) + h�̀2i>
n u'�

F [↵]
>
n

gas pressure and flow limits

+
�
h�̆2i>

n u⇡
+ h�̀2i>

n u'
�
F [↵]

>
n

gas pressure and flow variance

(19a)

Ract
` ,

�
h�3i>

` �
w � �c>hBi`

�
`

nominal pressure regulation

� 1>hBi`�r>
[�]

>
`

recourse balance

� z"̂
�
h�̆2�̂3i>

` (u⇡
+ u⇡

) + h�̀3i>
` u'�

F [�]
>
`

gas pressure and flow limits

�
�
h�̆2�̂3i>

` u⇡
+ h�̀3i>

` u'
�
F [�]

>
`

gas pressure and flow variance

(19b)

Rrent ,
⇣
�'> � �w> � �c>A

⌘
'

flow congestion rent

+
�
�w>�2 + �⇡> � �⇡>�

⇡ + �⇡>⇡ � �⇡>⇡

pressure congestion rent

+ �'>s'
+ �⇡>s⇡

variance rent

(19c)

Rcon
n , �c

n�n

nominal
balance

+ �r
n

recourse
balance

+ z"̂[F ]n

⇣
u'>h�̀2in + (u⇡

+ u⇡
)
>h�̆2in

⌘

gas pressure and flow limits

+ [F ]n
�
u'>h�̀2in + u⇡>h�̆2in

�

gas pressure and flow variance

(19d)

Table I
DETERMINISTIC VERSUS CHANCE-CONSTRAINED OPTIMIZATION OF CONTROL POLICIES

Parameter Unit Deterministic
control policies

Chance-constrained control policies

Variance-
agnostic

Pressure variance-aware,  ⇡ Flow variance-aware,  '

10
�3

10
�2

10
�1

1 10
1

10
2

Expected cost $1000 80.9 82.5 (100%) 100.5% 105.6% 113.8% 100.1% 102.5% 112.6%P
n Var[%̃n(⇠)] MPa2 217.5 63.4 (100%) 44.2% 18.9% 12.8% 92.8% 46.7% 24.7%P
` Var['̃`(⇠)] BMSCFD2 26.1 58.0 (100%) 83.4% 64.1% 59.2% 93.4% 44.8% 25.9%

P
`2Ec

p
` kPa 1939 3914 3570 3734 3661 3914 4030 3888P

`2Ev

p
` kPa 0 0 0 150 576 0 1 500

Constraint inf. % 53.7 0.04 0.02 0.02 0.02 0.03 0.02 0.03
Average Pinj MMSCFD 960.91 0.01 0.03 0.02 0.02 0.02 0.04 0.04
Average Pact kPa 121.68 0.19 0.08 0.10 0.05 0.28 0.04 0.04
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Figure 1: 48-node Gas Network
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Figure 2: 48-node Gas Network
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Figure 2. Comparison of the variance-agnostic (left) and the variance-aware (right) chance-constrained control policies in terms of the state variables variance
for " = 10%. The red values show the probability of flow reversal. The inset plot shows the correlation between the pressures at nodes 34 and 35.

The chance-constrained policies, on the other hand, produce
the control inputs that remain feasible with a probability at
least 1 � " = 99% and require a minimal effort to restore
the real-time gas flow feasibility. The variance-agnostic policy
requires only a slight increase of the expected cost relative
to the deterministic solution by 1.6%, while the variance-
aware policies allow to trade-off the expected operational cost
for the smaller variations of pressures and flow rates. The
variance of gas pressures and flow rates can be reduced by
63.8% and 7.2%, respectively, without any substantial impact
on the expected cost. Observe that the subsequent variance
reduction is achieved also due to the activation of valves in
two active pipelines, that are not operating in the deterministic
and variance-agnostic solutions.

Next, we show how the cost-variance trade-offs change
with different assignments of control policies (7) to network
assets. Figure 1 illustrates the cost-variance trade-offs when
the control policies are assigned to gas injections only (↵ 2
free, � = 0), to gas injections and compressors (↵, � 2
free, [�]>` = 0, 8` 2 Ev), and to all network assets including
valves (↵, � 2 free). Observe that the variance reduction
is achieved more rapidly and at lower costs as more active
pipelines are involved into uncertainty and variance control.
Hence, the stochastic control becomes more available as the
network operator deploys more pressure regulation action by
compressors and valves.

With the density plots in Fig. 2, we demonstrate the uncer-
tainty propagation through the network. The variance-agnostic
solution results in the large pressure variance in the eastern
part of the network with a large concentration of stochastic
gas extractions. This solution further allows the probability
of the gas flows reversal up to 11% for certain pipelines,
thus making the prediction of flow directions difficult. The
variance-aware solution with the joint penalization of pressures
and flows variance, in turn, drastically reduces the variation of
the state variables and localizes the most of the variation only
at nodes 34 and 35. Although this variation remains large,
the pressures at these nodes are highly correlated. Thus, by
Weymouth equation (2c), the flow variance and the probability
of flow reversal in edge (34, 35) remain small.

B. Revenue Analysis

Figure 3 depicts the total revenues of active pipelines and
gas injections as well as the total charges of gas consumers.
It further shows their decomposition into revenue streams
defined by the pricing scheme in (13). Relative to the de-
terministic payments, the chance-constrained policies lead to
a substantial increase in payments that further increase due to
the variance awareness. Besides the nominal supply revenues,
the chance-constrained policies produce the compensations
for the uncertainty and variance control that together exceed
deterministic payments by 37.3%. Moreover, the payments for

Figure 1. Comparison of the variance-agnostic (left) and the variance-aware (right) chance-constrained control policies in terms of the state variables variance
for " = 10%. The red values show the probability of flow reversal. The inset plot shows the correlation between the pressures at nodes 34 and 35.

at (1 � "̂)�quantile [19]. The standard deviation of each
gas extraction is set to 10% of the nominal rate. The joint
constraint violation probability " is set to 1% by default. To
retrieve the stationary point in (4), the non-convex problem (2)
is solved for the nominal gas extraction rates using the Ipopt
solver [18]. The repository [31] contains the input data and
code implementation in the JuMP package for Julia [32].

A. Analysis of the Optimized Network Response

We first study the optimized gas network response to
uncertainty under deterministic and chance-constrained control

policies (7a). The deterministic policies are optimized by set-
ting the safety factor z"̂ in problem (12) to zero. The policies
are compared in terms of the expected cost (9a), the aggregated
variance of gas pressures and flow rates

P
n Var[%̃n(⇠)] andP

` Var['̃`(⇠)], respectively, and the total pressure regulation
by compressors

P
`2Ec

p
` and valves

P
`2Ev

p
`. Note, we

discuss the natural pressure quantities, not their squared coun-
terparts used in optimization. The policies are also compared
in terms of network constraints satisfaction. We first sample
control inputs from (7) for S = 1, 000 realizations of forecast
errors and count the violations of network limits (6c). Second,
we assess the quality of the control inputs (7a) for the non-
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n(b⇠s)k, 8s = 1, . . . , S, (4b)

where ⇡̃n(b⇠s) and ⇡?
n(b⇠s) are parameters as in (2) estimated for each forecast error sample, and

t models the maximum distance (error). Then, by imposing the sample complexity requirement
(minimum number of samples S from P⇠), we statistically upper-bound the approximation error
associated with the stochastic pressure variables at node n. This requirement is inspired from the
robust optimization theory and is explicitly given by to the following result.

Lemma 1 (Sample complexity, adapted from [10]). For some parameters ↵ 2 [0, 1] and � 2 [0, 1],
if a sample complexity S is such that

S > 1

↵�
� 1,

then with probability (1�↵) and with confidence level (1��), the stochastic pressure approximation
error under linear law (7b) will not exceed the optimal solution t? of problem (4).
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network assets. The first condition in Corollary 1 is motivated
by the linearization of the Weymouth equation. If �1 6= 0,
there exists an extra revenue term �w>�1. As consumers are
inelastic, this payment can be thus allocated to consumer
charges, however its distribution among the customers remains
an open question. Finally, the second condition in Corollary
1 allows pressures to be zero at network nodes, which is too
restrictive for practical purposes. In the next Section V we
show that the revenue adequacy holds in practice even when
this condition is not satisfied.

Our last result is to show that the cost recovery for network
assets is also conditioned on the network design.

Corollary 2 (Cost recovery): Let # = 0, ` = 0, 8` 2 Ec,
and ` = 0, 8` 2 Ev . Then, the payments of Theorem 1 ensure
cost recovery for suppliers and active pipelines, i.e., Ract

` >
0, 8` 2 Ea, and Rsup

n � c1n#n � c#
n � c↵

n > 0, 8n 2 N .

V. NUMERICAL EXPERIMENTS

We run numerical experiments using a 48-node natural
gas network depicted in Fig. 2. The network parameters are
sourced from [28] with a few modifications: we homogenize
the pressure limits across network nodes, add two injections
in the demand area at nodes 32 and 37, and install two valves
in pipelines connecting nodes (28, 29) and (43, 44). The 22
gas extractions are modeled as �̃(⇠) = � + ⇠, where � is the
nominal extraction rate reported in [28] and ⇠ is the zero-mean
normally distributed forecast error. The safety parameter z"̂ is
thus the inverse CDF of the standard Gaussian distribution
at (1 � "̂)�quantile [19]. The standard deviation of each
gas extraction is set to 10% of the nominal rate. The joint

constraint violation probability " is set to 1% by default. To
retrieve the stationary point in (4), the non-convex problem (2)
is solved for the nominal gas extraction rates using the Ipopt
solver [18]. The repository [29] contains the input data and
code implementation in the JuMP package for Julia [30].

A. Analysis of the Optimized Network Response
We first study the optimized gas network response to

uncertainty under deterministic and chance-constrained control
policies (7). The deterministic policies are optimized by setting
the safety factor z"̂ in problem (12) to zero. The policies are
compared in terms of the expected cost (9a), the aggregated
variance of gas pressures and flow rates

P
n Var[%̃n(⇠)] andP

` Var['̃`(⇠)], respectively, and the total pressure regulation
by compressors

P
`2Ec

p
` and valves

P
`2Ev

p
`. Note, we

discuss the natural pressure quantities, not their squared coun-
terparts used in optimization.

The policies are also compared in terms of network con-
straints satisfaction. We first sample control inputs from (7)
for S = 1, 000 realizations of forecast errors and count the
violations of network limits (6c). Second, we assess the quality
of the control inputs (7a) for the non-convex gas equations,
by solving the projection problem

min
#s,s,'s,⇡s

k#̃(⇠s) � #sk + k̃(⇠s) � sk (14a)

s.t. A's = #s � Bs � �s � ⇠s, (14b)
Constraints (2c) � (2e), (14c)

for all realizations ⇠s, 8s = 1, . . . , S. A control input is
considered feasible if (14a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

P
sk#̃(⇠s) � #sk/S for gas injections and

Pact =
P

sk̃(⇠s) � sk/S for active pipelines.
The results are reported in Table I. Disregarding uncertainty,

the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
active pipelines by 12.7% of the nominal rates on average.
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in terms of network constraints satisfaction. We first sample
control inputs from (7) for S = 1, 000 realizations of forecast
errors and count the violations of network limits (6c). Second,
we assess the quality of the control inputs (7a) for the non-
convex gas equations, by solving the projection problem (15)
for all realizations ⇠s, 8s = 1, . . . , S. A control input is
considered feasible if (15a) is zero for a given realization. To
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The results are reported in Table I. Disregarding uncertainty,

the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
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active pipelines by 12.7% of the nominal rates on average.
The chance-constrained policies, on the other hand, produce
the control inputs that remain feasible with a probability at
least 1 � " = 99% and require a minimal effort to restore the
real-time gas flow feasibility. This real-time effort is non-zero
due to approximation errors induced by linear pressure and
flow equations of Lemma 1. Figure 2 illustrates the worst-case
stochastic pressure approximation errors obtained according to
the approach in Section III-F. The errors significantly depend
on the amount of uncertainty: with probability 90% and at high
confidence, the errors approach 0% for a small uncertainty
penetration level (� = 1%), and they will not exceed 5.8%
on average for the extremely large uncertainty penetration
(� = 10%). The errors under the deterministic solution, which
ignores gas extraction uncertainty, are larger by at least an
order of magnitude on average.

Table I further demonstrates that the variance-agnostic pol-
icy requires only a slight increase of the expected cost relative
to the deterministic solution by 1.6%, while the variance-
aware policies allow to trade-off the expected operational cost
for the smaller variations of pressures and flow rates. The
variance of gas pressures and flow rates can be reduced by
63.8% and 7.2%, respectively, without any substantial impact
on the expected cost. Observe that the subsequent variance
reduction is achieved also due to the activation of valves in
two active pipelines, that are not operating in the deterministic
and variance-agnostic solutions.

With the density plots in Fig. 1, we demonstrate the uncer-
tainty propagation through the network. The variance-agnostic
solution results in the large pressure variance in the eastern
part of the network with a large concentration of stochastic gas
extractions. This solution further allows the probability of the
gas flows reversal up to 11% for certain pipelines, thus making
the prediction of flow directions difficult. The variance-aware
solution with the joint penalization of pressures and flows
variance, in turn, drastically reduces the variation of the state
variables and localizes the most of the variation only at nodes
34 and 35. Failure to minimize the pressure variance at these
two nodes is due to relatively large approximation errors
compared to the rest of the nodes (see the top quantiles of
blue boxplots in Fig. 2). Although this variation remains large,
the pressures at these nodes are highly correlated. Thus, by
Weymouth equation (2c), the flow variance and the probability
of flow reversal in edge (34, 35) remain small.

Next, we analyze the contribution of network assets to the
variance control through the cost-variance trade-offs in Fig. 3.
The figure illustrates these trade-offs when the control policies
are assigned to gas injections only (↵ 2 free, � = 0), to gas
injections and compressors (↵, � 2 free, [�]>` = 0, 8` 2 Ev),
and to all network assets including valves (↵, � 2 free).
Observe that the variance reduction is achieved more rapidly
and at lower costs as more active pipelines are involved into
uncertainty and variance control. Hence, the stochastic control
becomes more available as the network operator deploys more
pressure regulation action by compressors and valves.

Last, we analyze structural network impacts on the cost-
variance trade-offs. We gradually brake cycles C1 (by remov-
ing edges (13, 14) and (14, 19)) and C2 (by removing edge

Figure 2. The worst-case stochastic pressure approximation errors summa-
rized across 48 nodes, for p = v = 0.9 in Lemma 3, and for different
uncertainty penetration levels. The blue boxplots

s.t. t > k⇡̃n(b⇠s) � ⇡?
n(b⇠s)k, 8s = 1, . . . , S, (4b)

where ⇡̃n(b⇠s) and ⇡?
n(b⇠s) are parameters as in (2) estimated for each forecast error sample, and

t models the maximum distance (error). Then, by imposing the sample complexity requirement
(minimum number of samples S from P⇠), we statistically upper-bound the approximation error
associated with the stochastic pressure variables at node n. This requirement is inspired from the
robust optimization theory and is explicitly given by to the following result.

Lemma 1 (Sample complexity, adapted from [10]). For some parameters ↵ 2 [0, 1] and � 2 [0, 1],
if a sample complexity S is such that

S > 1

↵�
� 1,

then with probability (1�↵) and with confidence level (1��), the stochastic pressure approximation
error under linear law (7b) will not exceed the optimal solution t? of problem (4).
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network assets. The first condition in Corollary 1 is motivated
by the linearization of the Weymouth equation. If �1 6= 0,
there exists an extra revenue term �w>�1. As consumers are
inelastic, this payment can be thus allocated to consumer
charges, however its distribution among the customers remains
an open question. Finally, the second condition in Corollary
1 allows pressures to be zero at network nodes, which is too
restrictive for practical purposes. In the next Section V we
show that the revenue adequacy holds in practice even when
this condition is not satisfied.

Our last result is to show that the cost recovery for network
assets is also conditioned on the network design.

Corollary 2 (Cost recovery): Let # = 0, ` = 0, 8` 2 Ec,
and ` = 0, 8` 2 Ev . Then, the payments of Theorem 1 ensure
cost recovery for suppliers and active pipelines, i.e., Ract

` >
0, 8` 2 Ea, and Rsup

n � c1n#n � c#
n � c↵

n > 0, 8n 2 N .

V. NUMERICAL EXPERIMENTS

We run numerical experiments using a 48-node natural
gas network depicted in Fig. 2. The network parameters are
sourced from [28] with a few modifications: we homogenize
the pressure limits across network nodes, add two injections
in the demand area at nodes 32 and 37, and install two valves
in pipelines connecting nodes (28, 29) and (43, 44). The 22
gas extractions are modeled as �̃(⇠) = � + ⇠, where � is the
nominal extraction rate reported in [28] and ⇠ is the zero-mean
normally distributed forecast error. The safety parameter z"̂ is
thus the inverse CDF of the standard Gaussian distribution
at (1 � "̂)�quantile [19]. The standard deviation of each
gas extraction is set to 10% of the nominal rate. The joint

constraint violation probability " is set to 1% by default. To
retrieve the stationary point in (4), the non-convex problem (2)
is solved for the nominal gas extraction rates using the Ipopt
solver [18]. The repository [29] contains the input data and
code implementation in the JuMP package for Julia [30].

A. Analysis of the Optimized Network Response
We first study the optimized gas network response to

uncertainty under deterministic and chance-constrained control
policies (7). The deterministic policies are optimized by setting
the safety factor z"̂ in problem (12) to zero. The policies are
compared in terms of the expected cost (9a), the aggregated
variance of gas pressures and flow rates

P
n Var[%̃n(⇠)] andP

` Var['̃`(⇠)], respectively, and the total pressure regulation
by compressors

P
`2Ec

p
` and valves

P
`2Ev

p
`. Note, we

discuss the natural pressure quantities, not their squared coun-
terparts used in optimization.

The policies are also compared in terms of network con-
straints satisfaction. We first sample control inputs from (7)
for S = 1, 000 realizations of forecast errors and count the
violations of network limits (6c). Second, we assess the quality
of the control inputs (7a) for the non-convex gas equations,
by solving the projection problem

min
#s,s,'s,⇡s

k#̃(⇠s) � #sk + k̃(⇠s) � sk (14a)

s.t. A's = #s � Bs � �s � ⇠s, (14b)
Constraints (2c) � (2e), (14c)

for all realizations ⇠s, 8s = 1, . . . , S. A control input is
considered feasible if (14a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

P
sk#̃(⇠s) � #sk/S for gas injections and

Pact =
P

sk̃(⇠s) � sk/S for active pipelines.
The results are reported in Table I. Disregarding uncertainty,

the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
active pipelines by 12.7% of the nominal rates on average.
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convex gas equations, by solving the projection problem (15)
for all realizations ⇠s, 8s = 1, . . . , S. A control input is
considered feasible if (15a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

P
sk#̃(⇠s) � #sk/S for gas injections and

Pact =
P

sk̃(⇠s) � sk/S for active pipelines.
The results are reported in Table I. Disregarding uncertainty,

the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
active pipelines by 12.7% of the nominal rates on average.
The chance-constrained policies, on the other hand, produce
the control inputs that remain feasible with a probability at
least 1 � " = 99% and require a minimal effort to restore the
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n(b⇠s)k, 8s = 1, . . . , S, (4b)

where ⇡̃n(b⇠s) and ⇡?
n(b⇠s) are parameters as in (2) estimated for each forecast error sample, and

t models the maximum distance (error). Then, by imposing the sample complexity requirement
(minimum number of samples S from P⇠), we statistically upper-bound the approximation error
associated with the stochastic pressure variables at node n. This requirement is inspired from the
robust optimization theory and is explicitly given by to the following result.

Lemma 1 (Sample complexity, adapted from [10]). For some parameters ↵ 2 [0, 1] and � 2 [0, 1],
if a sample complexity S is such that

S > 1

↵�
� 1,

then with probability (1�↵) and with confidence level (1��), the stochastic pressure approximation
error under linear law (7b) will not exceed the optimal solution t? of problem (4).
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n(b⇠s) are parameters as in (2) estimated for each forecast error sample, and

t models the maximum distance (error). Then, by imposing the sample complexity requirement
(minimum number of samples S from P⇠), we statistically upper-bound the approximation error
associated with the stochastic pressure variables at node n. This requirement is inspired from the
robust optimization theory and is explicitly given by to the following result.
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network assets. The first condition in Corollary 1 is motivated
by the linearization of the Weymouth equation. If �1 6= 0,
there exists an extra revenue term �w>�1. As consumers are
inelastic, this payment can be thus allocated to consumer
charges, however its distribution among the customers remains
an open question. Finally, the second condition in Corollary
1 allows pressures to be zero at network nodes, which is too
restrictive for practical purposes. In the next Section V we
show that the revenue adequacy holds in practice even when
this condition is not satisfied.

Our last result is to show that the cost recovery for network
assets is also conditioned on the network design.

Corollary 2 (Cost recovery): Let # = 0, ` = 0, 8` 2 Ec,
and ` = 0, 8` 2 Ev . Then, the payments of Theorem 1 ensure
cost recovery for suppliers and active pipelines, i.e., Ract

` >
0, 8` 2 Ea, and Rsup

n � c1n#n � c#
n � c↵

n > 0, 8n 2 N .

V. NUMERICAL EXPERIMENTS

We run numerical experiments using a 48-node natural
gas network depicted in Fig. 2. The network parameters are
sourced from [28] with a few modifications: we homogenize
the pressure limits across network nodes, add two injections
in the demand area at nodes 32 and 37, and install two valves
in pipelines connecting nodes (28, 29) and (43, 44). The 22
gas extractions are modeled as �̃(⇠) = � + ⇠, where � is the
nominal extraction rate reported in [28] and ⇠ is the zero-mean
normally distributed forecast error. The safety parameter z"̂ is
thus the inverse CDF of the standard Gaussian distribution
at (1 � "̂)�quantile [19]. The standard deviation of each
gas extraction is set to 10% of the nominal rate. The joint

constraint violation probability " is set to 1% by default. To
retrieve the stationary point in (4), the non-convex problem (2)
is solved for the nominal gas extraction rates using the Ipopt
solver [18]. The repository [29] contains the input data and
code implementation in the JuMP package for Julia [30].

A. Analysis of the Optimized Network Response
We first study the optimized gas network response to

uncertainty under deterministic and chance-constrained control
policies (7). The deterministic policies are optimized by setting
the safety factor z"̂ in problem (12) to zero. The policies are
compared in terms of the expected cost (9a), the aggregated
variance of gas pressures and flow rates

P
n Var[%̃n(⇠)] andP

` Var['̃`(⇠)], respectively, and the total pressure regulation
by compressors

P
`2Ec

p
` and valves

P
`2Ev

p
`. Note, we

discuss the natural pressure quantities, not their squared coun-
terparts used in optimization.

The policies are also compared in terms of network con-
straints satisfaction. We first sample control inputs from (7)
for S = 1, 000 realizations of forecast errors and count the
violations of network limits (6c). Second, we assess the quality
of the control inputs (7a) for the non-convex gas equations,
by solving the projection problem

min
#s,s,'s,⇡s

k#̃(⇠s) � #sk + k̃(⇠s) � sk (14a)

s.t. A's = #s � Bs � �s � ⇠s, (14b)
Constraints (2c) � (2e), (14c)

for all realizations ⇠s, 8s = 1, . . . , S. A control input is
considered feasible if (14a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

P
sk#̃(⇠s) � #sk/S for gas injections and

Pact =
P

sk̃(⇠s) � sk/S for active pipelines.
The results are reported in Table I. Disregarding uncertainty,

the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
active pipelines by 12.7% of the nominal rates on average.
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in terms of network constraints satisfaction. We first sample
control inputs from (7) for S = 1, 000 realizations of forecast
errors and count the violations of network limits (6c). Second,
we assess the quality of the control inputs (7a) for the non-
convex gas equations, by solving the projection problem (15)
for all realizations ⇠s, 8s = 1, . . . , S. A control input is
considered feasible if (15a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

P
sk#̃(⇠s) � #sk/S for gas injections and

Pact =
P

sk̃(⇠s) � sk/S for active pipelines.
The results are reported in Table I. Disregarding uncertainty,

the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
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active pipelines by 12.7% of the nominal rates on average.
The chance-constrained policies, on the other hand, produce
the control inputs that remain feasible with a probability at
least 1 � " = 99% and require a minimal effort to restore the
real-time gas flow feasibility. This real-time effort is non-zero
due to approximation errors induced by linear pressure and
flow equations of Lemma 1. Figure 2 illustrates the worst-case
stochastic pressure approximation errors obtained according to
the approach in Section III-F. The errors significantly depend
on the amount of uncertainty: with probability 90% and at high
confidence, the errors approach 0% for a small uncertainty
penetration level (� = 1%), and they will not exceed 5.8%
on average for the extremely large uncertainty penetration
(� = 10%). The errors under the deterministic solution, which
ignores gas extraction uncertainty, are larger by at least an
order of magnitude on average.

Table I further demonstrates that the variance-agnostic pol-
icy requires only a slight increase of the expected cost relative
to the deterministic solution by 1.6%, while the variance-
aware policies allow to trade-off the expected operational cost
for the smaller variations of pressures and flow rates. The
variance of gas pressures and flow rates can be reduced by
63.8% and 7.2%, respectively, without any substantial impact
on the expected cost. Observe that the subsequent variance
reduction is achieved also due to the activation of valves in
two active pipelines, that are not operating in the deterministic
and variance-agnostic solutions.

With the density plots in Fig. 1, we demonstrate the uncer-
tainty propagation through the network. The variance-agnostic
solution results in the large pressure variance in the eastern
part of the network with a large concentration of stochastic gas
extractions. This solution further allows the probability of the
gas flows reversal up to 11% for certain pipelines, thus making
the prediction of flow directions difficult. The variance-aware
solution with the joint penalization of pressures and flows
variance, in turn, drastically reduces the variation of the state
variables and localizes the most of the variation only at nodes
34 and 35. Failure to minimize the pressure variance at these
two nodes is due to relatively large approximation errors
compared to the rest of the nodes (see the top quantiles of
blue boxplots in Fig. 2). Although this variation remains large,
the pressures at these nodes are highly correlated. Thus, by
Weymouth equation (2c), the flow variance and the probability
of flow reversal in edge (34, 35) remain small.

Next, we analyze the contribution of network assets to the
variance control through the cost-variance trade-offs in Fig. 3.
The figure illustrates these trade-offs when the control policies
are assigned to gas injections only (↵ 2 free, � = 0), to gas
injections and compressors (↵, � 2 free, [�]>` = 0, 8` 2 Ev),
and to all network assets including valves (↵, � 2 free).
Observe that the variance reduction is achieved more rapidly
and at lower costs as more active pipelines are involved into
uncertainty and variance control. Hence, the stochastic control
becomes more available as the network operator deploys more
pressure regulation action by compressors and valves.

Last, we analyze structural network impacts on the cost-
variance trade-offs. We gradually brake cycles C1 (by remov-
ing edges (13, 14) and (14, 19)) and C2 (by removing edge

Figure 4. Expected cost versus pressure variance under three network
structures. Pressure penalty  ⇡ 2 [10

�3, 10
�1
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real-time gas flow feasibility. This real-time effort is non-zero
due to approximation errors induced by linear pressure and
flow equations of Lemma 1. Figure 2 illustrates the worst-case
stochastic pressure approximation errors obtained according to
the approach in Section III-F. The errors significantly depend
on the amount of uncertainty: with probability 90% and at high
confidence, the errors approach 0% for a small uncertainty
penetration level (� = 1%), and they will not exceed 5.8%
on average for the extremely large uncertainty penetration
(� = 10%). The errors under the deterministic solution, which
ignores gas extraction uncertainty, are larger by at least an
order of magnitude on average.

Table I further demonstrates that the variance-agnostic pol-
icy requires only a slight increase of the expected cost relative
to the deterministic solution by 1.6%, while the variance-
aware policies allow to trade-off the expected operational cost
for the smaller variations of pressures and flow rates. The
variance of gas pressures and flow rates can be reduced by
63.8% and 7.2%, respectively, without any substantial impact
on the expected cost. Observe that the subsequent variance
reduction is achieved also due to the activation of valves in
two active pipelines, that are not operating in the deterministic
and variance-agnostic solutions.

With the density plots in Fig. 1, we demonstrate the uncer-
tainty propagation through the network. The variance-agnostic
solution results in the large pressure variance in the eastern
part of the network with a large concentration of stochastic gas
extractions. This solution further allows the probability of the
gas flows reversal up to 11% for certain pipelines, thus making
the prediction of flow directions difficult. The variance-aware
solution with the joint penalization of pressures and flows
variance, in turn, drastically reduces the variation of the state
variables and localizes the most of the variation only at nodes
34 and 35. Failure to minimize the pressure variance at these
two nodes is due to relatively large approximation errors
compared to the rest of the nodes (see the top quantiles of
blue boxplots in Fig. 2). Although this variation remains large,
the pressures at these nodes are highly correlated. Thus, by
Weymouth equation (2c), the flow variance and the probability
of flow reversal in edge (34, 35) remain small.

Next, we analyze the contribution of network assets to the
variance control through the cost-variance trade-offs in Fig. 3.
The figure illustrates these trade-offs when the control policies
are assigned to gas injections only (↵ 2 free,� = 0), to gas
injections and compressors (↵,� 2 free, [�]>` = 0, 8` 2 Ev),
and to all network assets including valves (↵,� 2 free).
Observe that the variance reduction is achieved more rapidly
and at lower costs as more active pipelines are involved into
uncertainty and variance control. Hence, the stochastic control
becomes more available as the network operator deploys more
pressure regulation action by compressors and valves.

Last, we analyze structural network impacts on the cost-
variance trade-offs. We gradually break cycles C1 (by remov-
ing edges (13, 14) and (14, 19)) and C2 (by removing edge
(29, 30)) in Fig. 1 to change the network to a tree-like topol-
ogy, leaving only those cycles that are mandatory for feasible
operation. Figure 4 summarizes the cost-variance trade-offs
and points on the ambiguous role of network cycles. Breaking
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the nominal supply under stochastic policies also increase due
to several reasons. First, as shown in Table I, the stochastic
policies require a larger deployment of gas compressors and
valves that extract an additional gas mass for fuel purposes, up
to 4.2% of the network demand, thus increasing the marginal
cost of gas suppliers. Second, to provide the security margins
for chance constraints (12g)–(12i) and (12l)–(12o), the op-
timized policies require withholding less expensive injections
from the purposes of the nominal supply. Last, with increasing
assignments of penalty factors  ⇡ and  ', the optimality of
the nominal injection cost is altered in the interest of reduced
variance of state variables. Finally, the mismatch between the
consumer charges and the revenues of gas injections and active
pipelines is non-negative, thus satisfying the revenue adequacy
in all three instances.

VI. CONCLUSIONS & OUTLOOK

This work has established the stochastic control policies and
pricing scheme for the non-convex steady-state gas network
operations under gas extraction uncertainty. The work offers
an uncertainty- and variance-aware policy optimization that
ensures the gas flow feasibility with a high probability and
minimal variance of the state variables. Moreover, the work
challenged the deterministic market settlement and offered fi-
nancial remunerations to network assets for their contributions
to uncertainty and variance control.

The definition and optimization of gas storage control
policies under uncertainty constitute the relevant direction for
a future work. In addition, the uncertainty- and variance-aware
coordination and financial contracts between the gas and power
network operators are valid research directions.

APPENDIX

A. Proof of Lemma 1
The substitution of the linearized Weymouth equation from

(6b) and policies (7a) into the gas conservation law in (6b)
yields stochastic pressures as

A'̃(⇠) = #̃(⇠) � B̃(⇠) � �̃(⇠)

, A(�1 + �2⇡̃(⇠) + �3(+ �⇠))

= #+ ↵⇠ � B(+ �⇠) � � � ⇠

, A�2

�̂2

⇡̃(⇠) = #� (B + A�3)� � � A�1

from (2b),(4) : A�2⇡=�̂2⇡

+ (↵� (B + A�3)

�̂3

� � diag[1])⇠

, �̂2⇡̃(⇠) = �̂2⇡ + (↵� �̂3� � diag[1])⇠

, ⇡̃(⇠) = ⇡ + �̂�1
2 (↵� �̂3� � diag[1])⇠,

where �̂2 2 RN⇥N and �̂3 2 RN⇥E are auxiliary constants.
As �̂2 = A�2, it is only invertible for the tree network
topology. For generality, consider a reference node (r), see
Remark 1, and let �̂2\r be a reduced matrix �̂2 without the rth

row and column in �̂2. The invertible counterpart of �̂2 is

�̆2 =


�̂�1
2\r 0

0� 0

�
,

and the stochastic pressures become

⇡̃(⇠) = ⇡ + �̆2(↵� �̂3� � diag[1])⇠, (15a)
⇡r = ⇡̊r, [↵]>r = 0, [�]>r = 0, (15b)

for an arbitrary network topology. Here, equation (15b) is
enforced to satisfy the reference node definition.

To obtain the stochastic flow rates, substitute (15a) into the
linearized Weymouth equation in (6b) and rearrange, i.e.,

'̃(⇠) = �1 + �2⇡̃(⇠) + �3̃(⇠)

, '̃(⇠) = �1 + �2⇡ + �3

from (4) : '

+ �2�̆2

�̀2

(↵� diag[1])⇠

� (�2�̆2�̂3 � �3)

�̀3

�⇠

, '̃(⇠) = '+ (�̀2(↵� diag[1]) + �̀3�)⇠,

where �̀2 2 RE⇥N and �̀3 2 RE⇥E are constants.

B. Proof of Lemma 2
Consider the stochastic gas conservation law in (6b):

A'̃(⇠) = #̃(⇠) � B̃(⇠) � �̃(⇠).

From the properties of the edge-node incidence matrix A, we
know that 1>A'̃(⇠) = 0. By summing up N equations above
and by substituting equations (7a), we arrive to equation

1>#� 1>B� 1>� + 1>↵⇠ � 1>B�⇠ � 1>⇠ = 0,

which is separable into nominal and random components:

1>#� 1>B� 1>� = 0, (16a)
1>↵⇠ � 1>B�⇠ � 1>⇠ = 0, (16b)

where equation (16a) is the deterministic gas conservation law,
which is alternatively expressed through (1a), thus providing
the first condition in (8a). The second condition in (8b) is
provided from (16b), which holds for any realization of ⇠ if
the recourse variables ↵ and � obey (↵� B�)>1 = 1.

To obtain condition (8c), substitute (7) into the stochastic
linearized Weymouth equation in (6b):

' = �1 + �2⇡ + �3� ↵(�̀2 � �2�̆2)⇠

+ �(�̀3 � �2�̆2�̂3 + �3)⇠ + (�̀2 � �2�̆2)diag[1]⇠

= �1 + �2⇡ + �3,

Figure 5. Total payments for active pipelines Ract, suppliers Rsup and
consumers Rcon under deterministic, chance-constrained variance-agnostic
and chance-constrained variance-aware ( ⇡

= 0.1, '
= 100) policies.

cycle C1 in the supply concentration area causes congestion,
which prevents deploying western suppliers to minimize the
pressure variance in the east, substantially increasing the cost
of operations. On the other hand, the subsequent removal of
cycle C2 weakens the graph connectivity and allows for more
economical and more drastic variance reduction in the east.
This agrees with equation (7b), which relates pressures and
forecast errors through parameters �̆2 and �̂3, that encode
graph connectivity. We notice, the trade-offs in Fig. 3 and
4 motivate the problem of the variance-aware network design.

B. Revenue Analysis
Figure 5 depicts the total revenues of active pipelines and

gas injections as well as the total charges of gas consumers.
It further shows their decomposition into revenue streams
defined by the pricing scheme in (19). Relative to the de-
terministic payments, the chance-constrained policies lead to
a substantial increase in payments that further increase due to
the variance awareness. Besides the nominal supply revenues,
the chance-constrained policies produce the compensations
for the uncertainty and variance control that together exceed
deterministic payments by 37.3%. Moreover, the payments for
the nominal supply under stochastic policies also increase due
to several reasons. First, as shown in Table I, the stochastic
policies require a larger deployment of gas compressors and
valves that extract an additional gas mass for fuel purposes, up
to 4.2% of the network demand, thus increasing the marginal
cost of gas suppliers. Second, to provide the security margins
for chance constraints (12g)–(12i) and (12l)–(12o), the op-
timized policies require withholding less expensive injections
from the purposes of the nominal supply. Last, with increasing
assignments of penalty factors  ⇡ and  ', the optimality of
the nominal injection cost is altered in the interest of reduced
variance of state variables. Finally, the mismatch between the
consumer charges and the revenues of gas injections and active
pipelines is non-negative, thus satisfying the revenue adequacy
in all three instances.

VI. CONCLUSIONS & OUTLOOK

This work has established the stochastic control policies and
pricing scheme for the non-convex steady-state gas network
operations under gas extraction uncertainty. The work offers
an uncertainty- and variance-aware policy optimization that

ensures the gas flow feasibility with a high probability and
minimal variance of the state variables. Moreover, the work
challenged the deterministic market settlement and offered fi-
nancial remunerations to network assets for their contributions
to uncertainty and variance control.

The definition and optimization of gas storage control
policies under uncertainty constitute the relevant direction for
a future work. In addition, a price-responsive modeling of
stochastic gas extraction rates, by means of co-optimization of
control policies and the stochastic gas consumption models,
is a valid research direction. This would lead, for example,
to uncertainty- and variance-aware coordination and financial
contracts between the gas and power network operators.

APPENDIX

A. Proof of Lemma 1
The substitution of the linearized Weymouth equation from

(6b) and policies (7a) into the gas conservation law in (6b)
yields stochastic pressures as

A'̃(⇠) = #̃(⇠) � B̃(⇠) � �̃(⇠)

, A(�1 + �2⇡̃(⇠) + �3(+ �⇠))

= #+ ↵⇠ � B(+ �⇠) � � � ⇠

, A�2

�̂2

⇡̃(⇠) = #� (B + A�3)� � � A�1

from (2b),(4) : A�2⇡=�̂2⇡

+ (↵� (B + A�3)

�̂3

� � diag[1])⇠

, �̂2⇡̃(⇠) = �̂2⇡ + (↵� �̂3� � diag[1])⇠

, ⇡̃(⇠) = ⇡ + �̂�1
2 (↵� �̂3� � diag[1])⇠,

where �̂2 2 RN⇥N and �̂3 2 RN⇥E are auxiliary constants.
As �̂2 = A�2, it is only invertible for the tree network
topology. For generality, consider a reference node (r), see
Remark 1, and let �̂2\r be a reduced matrix �̂2 without the rth

row and column in �̂2. The invertible counterpart of �̂2 is

�̆2 =


�̂�1
2\r 0

0> 0

�
,

and the stochastic pressures become

⇡̃(⇠) = ⇡ + �̆2(↵� �̂3� � diag[1])⇠, (20a)
⇡r = ⇡̊r, [↵]>r = 0, [�]>r = 0, (20b)

for an arbitrary network topology. Here, equation (20b) is
enforced to satisfy the reference node definition.

To obtain the stochastic flow rates, substitute (20a) into the
linearized Weymouth equation in (6b) and rearrange, i.e.,

'̃(⇠) = �1 + �2⇡̃(⇠) + �3̃(⇠)

, '̃(⇠) = �1 + �2⇡ + �3

from (4) : '

+ �2�̆2

�̀2

(↵� diag[1])⇠

� (�2�̆2�̂3 � �3)

�̀3

�⇠

, '̃(⇠) = '+ (�̀2(↵� diag[1]) + �̀3�)⇠,

where �̀2 2 RE⇥N and �̀3 2 RE⇥E are constants.
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B. Proof of Lemma 2
Consider the stochastic gas conservation law in (6b):

A'̃(⇠) = #̃(⇠) � B̃(⇠) � �̃(⇠).

From the properties of the edge-node incidence matrix A, we
know that 1>A'̃(⇠) = 0. By summing up N equations above
and by substituting equations (7a), we arrive to equation

1>#� 1>B� 1>� + 1>↵⇠ � 1>B�⇠ � 1>⇠ = 0,

which is separable into nominal and random components:

1>#� 1>B� 1>� = 0, (21a)
1>↵⇠ � 1>B�⇠ � 1>⇠ = 0, (21b)

where equation (21a) is the deterministic gas conservation law,
which is alternatively expressed through (1a), thus providing
the first condition in (8a). The second condition in (8b) is
provided from (21b), which holds for any realization of ⇠ if
the recourse variables ↵ and � obey (↵� B�)>1 = 1.

To obtain condition (8c), substitute (7) into the stochastic
linearized Weymouth equation in (6b):

' = �1 + �2⇡ + �3� ↵(�̀2 � �2�̆2)⇠

+ �(�̀3 � �2�̆2�̂3 + �3)⇠ + (�̀2 � �2�̆2)diag[1]⇠

= �1 + �2⇡ + �3,

yielding a deterministic equation due to the definition of
constants �̀2 and �̀3. Finally, the stochastic equation for the
reference node is satisfied by equations (20b).

C. Dualization of Conic Constraints
The results presented in this section are due to [28, Chapter

5]. Consider the SOCP problem of the form

min
x2Rn

c>x, s.t. kAixk 6 b>
i x, 8i = 1, . . . , m, (22a)

with c 2 Rn, Ai 2 Rni⇥n, bi 2 Rn. To dualize the second-
order cone constraint, we use the fact that for any pair �i 2 R1

and ui 2 Rni it holds that

max
ui,�i:

kuik6�i

� u>
i Aix � �ib

>
i x = max

�i>0
� �i(kAixk � b>

i x)

=

⇢
0, if kAixk 6 b>

i x,
�1, otherwise. (22b)

Therefore, the Lagrangian of the SOCP problem writes in
variables x 2 Rn, � 2 Rm and u 2 Rni⇥n as

max
kuik6�i

min
x

L(x, u,�) = c>x �
mX

i=1

(u>
i Aix + �ib

>
i x).

(22c)

Consider another SOCP problem of the form

min
x2Rn

c>x, s.t. kAixk2 6 b>
i x, 8i = 1, . . . , m, (22d)

with the rotated second-order cone constraint. To dualize this
constraint, we use the fact that for any set of variables µi 2 R1

, �i 2 R1 and ui 2 Rni it holds that

max
ui,µi,�i:

kuik26µi�i

� u>
i Aix � 1/2�i � µib

>
i x

= max
�i>0

� �i(kAixk2 � b>
i x) =

⇢
0, if kAixk2 6 b>

i x,
�1, otherwise.

Therefore, the Lagrangian of the SOCP problem writes in
variables x 2 Rn, µ,� 2 Rm and u 2 Rni⇥n as

max
kuik26µi�i

min
x

L(x, u, µ,�) = c>x

�
mX

i=1

(u>
i Aix + 1/2�i + µib

>
i x). (22e)

D. Proof of Theorem 1
Consider the problem of finding an equilibrium solution

among the following set of agents. First, consider a price-
setter who seeks the optimal prices to coupling constraints
(12b)–(12i) in response to their slacks by solving

max�c,�r,�w,�',�⇡,�',�⇡,�⇡ �c> (A'� #+ B+ �)

+ �r> �
1 � (↵� B�)>1

�
+ �w> ('� �1 � �2⇡ � �3)

+
PE

`=1 �
'
`

�
s'

` � kF [�̀2(↵� diag[1]) � �̀3�]>` k
�

+
PN

n=1 �
⇡
n

�
s⇡

n � kF [�̆2(↵� �̂3� � diag[1])]>n k
�

+
PE

`=1 �
'

`

�
'` � z"̂kF [�̀2(↵� diag[1]) � �̀3�]>` k

�

+
PN

n=1 �
⇡
⇡

�
⇡n � ⇡n � z"̂kF [�̆2(↵� �̂3� � diag[1])]>n k

�

+
PN

n=1 �
⇡
⇡

�
⇡n � ⇡n � z"̂kF [�̆2(↵� �̂3� � diag[1])]>n k

�
.

(23)

Problem (23) adjusts the prices respecting the slack of each
constraint, e.g., �c # if A'�#+B > �, and �c " otherwise.
From SOCP property (22b), we know that the last five terms
associated with the conic constraints rewrite equivalently as

� �'>s' � �⇡>s⇡ � �'>'� �⇡> (⇡ � ⇡) � �⇡> (⇡ � ⇡)

�
PE

`=1[u
' + z"̂u

']`F [�̀2(↵� diag[1]) � �̀3�]>`

�
PN

n=1[u
⇡ + z"̂u⇡ + z"̂u⇡]nF [�̆2(↵� �̂3� � diag[1])]>n ,

which is linear and separable, and where the dual variables
u', u' 2 RE⇥N and u⇡, u⇡, u⇡ 2 RN⇥N are subject to the
following dual feasibility conditions

k[u⇡]nk 6 �⇡
n, k[u⇡]nk 6 �⇡

n, k[u⇡]nk 6 �⇡
n, (24a)

k[u']`k 6 �'
` , k[u']`k 6 �'

` , 8n 2 N , 8` 2 E . (24b)

By separating the terms with respect to the variables of
network assets, network operator, and free terms associated
with each consumer, we obtain the revenue functions in (19).
Consider next that each gas supplier n 2 N solves

max
#n,[↵]n,c#

n,c↵
n

Rsup
n (#n, [↵]n) � c1n#n � c#

n � c#
↵ (25a)

s.t. �#
n : z"̂kc̀2n#nk2 6 c#

n, (25b)
�↵

n : z"̂kF c̀2n[↵]>n k2 6 c↵
n, (25c)

�#
n : z"̂kF [↵]>n k 6 #n � #n, (25d)
�#

n : z"̂kF [↵]>n k 6 #n � #n, (25e)

to maximize the profit in response to equilibrium prices. Next,
consider that each active pipeline ` 2 E solves

max
`,[�]`

Ract
` (`, [�]`) (26a)
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s.t. �
` : z"̂kF [�]>` k 6 ` � `, (26b)
�

` : z"̂kF [�]>` k 6 ` � `, (26c)

to maximize the revenue in response to equilibrium prices.
Finally, consider a gas network operator which solves

min
⇡,',s⇡,s'

Rrent(⇡,', s⇡, s') (27a)

s.t. �⇡̊
r : ⇡r = ⇡̊r (27b)

to maximize the network rent in response to equilibrium prices.
By taking the path outlined in Appendix C, the first-order
optimality conditions (FOC) of equilibrium problems (25)–
(27) are given by the following equalities

# : c1 � u# � c̀2 � �c + �# � �# = 0, (28a)
 : [�c>B]> � [�w>�3]

> + � � � = 0, (28b)
⇡ : �⇡ � �⇡ � [�w>�2]

> � Ir � �⇡̊ = 0, (28c)
' : [�c>A]> + �w � �' = 0, (28d)

s⇡ : �⇡ =  ⇡, s' : �' =  ', (28e)
c# : µ# = 1, c↵ : µ↵ = 1, (28f)

[↵]n : F
⇣
u'>h�̀2in + u⇡>h�̆2in + z"̂[u

# + u#]>n

⌘

+ F [u↵]>n c̀2 + �r = 0, (28g)
[�]` : F

�
u'>h�̀3i` + u⇡>h�̆2�̂3i` � z"̂[u

 + u]>`
�

+ 1>hBi`�
r = 0, (28h)

where vector Ir 2 RN takes 1 at position corresponding to the
reference node, and 0 otherwise. Conditions (28) are identical
to those of centralized problem (12), while the set of FOC of
problem (23) yields primal constraints (12b)–(12i). Together
with the primal constraints of problems (25)–(27), they are
identical to the feasibility conditions of the centralized prob-
lem. Hence, problem (12) solves the competitive equilibrium.

E. Proof of Corollary 1
From the feasibility conditions (12b)–(12d) and com-

plementarity slackness conditions associted with constraints
(12e)–(12i), we know that the objective function of the price-
setting problem in (23) is zero at optimum. By rearranging the
terms of (23), we have

PN
n=1 Rcon

n �
PN

n=1 Rsup
n �

PE
`=1 Ract

` = Rrent + �w>�1.

If let �1 = 0, it remains to show that the congestion rent
accumulated by the network is non-negative, i.e.,

�
�'> � �w> � �c>A

�
'

Term A

+
�
�w>�2 + �⇡> � �⇡>�

⇡

Term B

+ �⇡>⇡ � �⇡>⇡

Term C

+ �'>s' + �⇡>s⇡

Term D

> 0.

From optimality condition (28d), we know that term A is zero.
Due to (28c), the term B is zero for all nodes but the reference
one, and for the reference node it is �⇡̊⇡̊ > 0 from the dual
objective function of problem (27). Term D is non-negative,
because from (28e) we have that the dual prices �' and �⇡

are non-negative, and variables s' and s⇡ are lower-bounded

by zero as per (12e) and (12f). In term C, �⇡>⇡ and �⇡>⇡
are non-negative due conditions (24a). Thus, the rent is always
non-negative if and only if the network design allows ⇡ = 0.

F. Proof of Corollary 2

We need to show that the functions (25a) and (26a) are
non-negative. Both (25a) and (26a) are lower bounded by their
corresponding dual functions, i.e.,

(25a) > 1/2(�#
n + �↵

n) + �#
n#n � �#

n#n, 8n 2 N ,

(26a) > �
` ` � �

` `, 8` 2 Ea.

From the complementary slackness of constraints in (25) and
(26), we know that �#,�↵,�#,�# > 0 and �,� > 0. As
injection limits are all non-negative, function (25a) is non-
negative if and only if the network design allows # = 0.
As pressure regulation limits for compressors and valves are
respectively non-negative and non-positive, function (26a) is
non-negative if and only if the network design allows ` =
0, 8` 2 Ec and ` = 0, 8` 2 Ev .

NOMENCLATURE

Sets
E Set of pipelines.
Ea, Ec, Ev Set of active, compressor-, valve-hosting pipelines.
N Set of nodes.
Parameters
� Vector of nominal gas extraction rates.
�, �̂, �̆, �̀ Linearization coefficients (and their transformations)

associated with the Weymouth equation.
c̀2 Factorization of the 2nd-order cost coefficients.
R(·) Revenue associated with network agent (·).
 ⇡ Vector of pressure variance penalty factors.
 ' Vector of flow variance penalty factors.
⌃, F Forecast errors covariance matrix and its factorization.
, Vectors of min. and max. squared regulation limits.
⇡,⇡ Vectors of min. and max. squared pressure limits.
⇢, ⇢ Vectors of min. and max. pressure limits.
#,# Vectors of min. and max. gas injection limits.
", "̂ Joint and individual constraint violation parameters.
A Node-edge incidence matrix.
B Sending node - active pipeline incidence matrix.
b Vector of gas mass - pressure conversion factors.
c1, c2 Vectors of the 1st- and 2nd-order cost coefficients.
p Probability of violating performance guarantee.
S Sample complexity in out-of-sample analysis.
v Confidence level of performance guarantee.
w Vector of pipeline friction coefficients.
z"̂ Safety parameter in chance constraint reformulation.
Variables
↵ Matrix of gas injection recourse decisions.
� Matrix of pressure regulation recourse decisions.
 Vector of pressure regulation rates.
�, u Vectors and matrices of dual variables.
⇡ Vector of nodal pressures.
' Vector of gas flows.
# Vector of nodal gas injections.
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c#, c↵ Vectors of 2nd-order nominal and recourse costs.
s⇡ Vector of pressure standard deviations.
s' Vector of flow standard deviations.
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