Exploring Market Properties of Policy-based Reserve Procurement for
Power Systems

Anubhav Ratha, Jalal Kazempour, Ana Virag and Pierre Pinson

Abstract— This paper proposes a market mechanism for
co-optimization of energy and reserve procurement in day-
ahead electricity markets with high shares of renewable energy.
The single-stage chance-constrained day-ahead market clearing
problem takes uncertain wind in-feed into account, resulting in
optimal day-ahead dispatch schedule and an affine participation
policy for generators for the real-time reserve provision. Under
certain assumptions, the chance-constrained market clearing is
reformulated as a convex quadratic program. Using tools from
equilibrium modeling and variational inequalities, we explore
the existence and uniqueness of a Nash equilibrium. Under the
assumption of perfect competition in the market, we evaluate
the satisfaction of desirable market properties, namely cost
recovery, revenue adequacy, market efficiency, and incentive
compatibility. To illustrate the effectiveness of the proposed
market clearing, it is benchmarked against a deterministic co-
optimization of energy and reserve procurement. Biased and
unbiased out-of-sample simulation results for a power systems
test case highlight that the proposed market clearing results
in lower expected system operations cost than the deterministic
benchmark, without the loss of any desirable market properties.

I. INTRODUCTION

Real-time balancing between supply and demand of elec-
tricity is challenging for the operation of power systems with
high shares of intermittent renewable energy sources such
as wind energy. Operational reserves for power systems are
services traded in the market, in addition to energy, which
ensure that deviations of actual wind power production from
its day-ahead forecasts can be mitigated during real-time
operation. Technical challenges aside, electricity markets
also need to evolve such that cost-efficient market-based
procurement and activation of reserves can be achieved.

Market-based procurement of reserves has been a topic of
great interest in recent years, see [1], [2]. In current practice,
illustrated in Figure 1a, the Market Operator (MO) estimates
a system-wide parameter, Minimum Reserve Requirement
(MRR) which is the minimum reserve capacity that must be
procured to ensure a secure and efficient real-time balancing.
Derived either from empirical studies or through probabilistic
analysis of uncertainty [3], the MRR is then allocated among
available flexible generators in a reserve capacity scheduling
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Fig. 1: Comparison of market clearing mechanisms for
energy and reserve. Each (e) represents a market clearing.

market prior to the day-ahead market clearing!. Finally,
energy redispatch cost arises due to real-time markets that are
necessary to activate the reserve energy from flexible gener-
ators to exactly meet the deviations. Faced with the situation
to integrate an increasing amount of intermittent generation,
over-estimation of MRR and thereby over-dimensioning of
reserves has become a practice that increases the cost of
operating power systems.

With the strong coupling that exists between the supply of
energy and provision of reserves, recent studies have argued
for co-optimization of energy and reserves in day-ahead mar-
kets [5], shown in Figure 1b. Primarily, two research streams
have shaped this discussion. The first adopts scenario-based
stochastic programming methods, for example in [6] and
[7], to select reserves in the day-ahead stage such that the
cost of activated reserves during real-time is optimal for the

I'This practice is followed by several European electricity markets (except
a few markets such as the Italian electricity market) [4]. Markets in the
US follow a deterministic co-optimization to procure energy and reserves,
similar to the benchmark discussed in Case Study (Section IV).



expected realization of uncertainty and feasible for all the
scenarios in the sample set considered. A very large number
of scenarios is required to represent the uncertainty well and
to ensure good out-of-sample performance, at the cost of
higher computational need. The other research stream uses
robust optimization techniques, such as in [8], [9] and [10],
to allocate and operate reserves such that the cost of system
operation is optimal with respect to the worst-case outcome
and is feasible for any outcome of uncertainty within a
parameterized uncertainty set. A market for reserves based on
control policies was first proposed in [8], built upon a robust
optimization model. While introducing computational ease,
this approach by design results in a conservative solution and
relies on meticulous study of uncertainty sets. Despite the
new market direction introduced by [8], the market properties
and pricing scheme were not elaborated upon.

In this paper, inspired by the control policy-based reserves
discussed in [8], we propose a market clearing mechanism
based on chance-constrained programming that co-optimizes
energy and reserves at the day-ahead stage, as shown in
Figure Ic. Chance-constrained programming, as highlighted
in [11], provides a practical approach addressing drawbacks
of the aforementioned techniques. Although it necessitates an
additional step of convexification of chance constraints (see
[12], [13]), it exhibits good out-of-sample performance and
adjustable conservativeness at low computational cost. Based
on the effectiveness of linear decision rules in decision-
making under uncertainty, as examined in [14], we select
an affine reserve policy such that participation in reserve
activation during real-time operation stage is a linear function
of the total balancing need. In addition to the optimal dimen-
sioning of reserves, policy-based procurement of reserves
has the advantage of resulting in efficient pricing for the
reserve services while removing the requirement of real-
time markets for reserve activation and associated energy
redispatch cost. Under the assumption of perfect competition,
aided by a study of Nash equilibria using tools from varia-
tional inequalities [15] in our proposed market clearing, we
explore the existence and uniqueness of market equilibrium
and the satisfaction of desirable market properties, namely
cost recovery for agents, revenue adequacy for the MO,
market efficiency and incentive compatibility [16].

We follow the analytical convexification of probabilistic
chance constraints, introduced in [11], which results in a
conic programming problem. Further, we use the direction
suggested in [17] to simplify the conic constraints to linear
formulations. In a case study built around a power system
with a high share of installed wind power capacity and
using biased and unbiased out-of-sample simulations, we
benchmark the proposed market clearing method against
a deterministic power and reserve co-optimization. This
enables us to quantify the reduction in expected total system
operations cost by the adoption of our proposed market
clearing, under adverse realizations of uncertainty.

The paper is organized as follows: section II presents
the proposed co-optimization of energy and reserves, stating
the underlying assumptions and discussing its mathemati-

cal interpretations as an equilibrium problem and a non-
cooperative game. Section III evaluates the satisfaction of
market properties, while results of the numerical case study
are presented and discussed in section IV. Finally, conclu-
sions and future work are discussed in section V.

II. PROBLEM FORMULATION

The following considers a single-node power system com-
prising of a set of flexible generators, g € G, a set of wind
farms, k € K, and an inflexible aggregated load, D.

A. Preliminaries

It is assumed that perfect competition exists in the market,
such that no market participant exhibits strategic behavior.
The wind farms are assumed to have zero marginal cost
of production and excess wind spillage is considered free.
Further, uncertainty in the form of wind forecast errors is
considered to be the only source of uncertainty in the system.
To avoid non-convexities introduced by the commitment
status of generators, it is assumed that only scheduled
generators participate in the day-ahead market clearing. The
value of lost load as well as the price caps for the day-ahead
market prices is considered to be €500/MWh.

B. Modeling of Uncertainty

In the day-ahead market clearing stage, forecast errors
in power production from the wind farm k are modeled to
follow a zero-mean Normal distribution, N(0, 0;) centered
around the best available point forecast, W;. The value of o
should be estimated from historical forecast errors for each
wind farm location and time of the day.

Assumption 1: The standard deviations of the zero-mean
normally distributed random forecast errors of wind farms,
Ok, Vk € K, are temporally and spatially uncorrelated with
respect to hours of the day and among wind farm sites,
respectively.

Remark 1: The assumption of spatial independence of
forecast errors is realistic for markets operating over a large
geographical area, as discussed in [11]. The absence of
temporal correlation is an assumption adopted in this paper
to allow for hourly decoupling of the problem.

Under Assumption 1, the total error or deviation during
real-time is defined as

A=Y &, (1

keX
where O, refers to the error in forecast for the wind farm
k. As a result, the uncertain parameter A is assumed to be
drawn from a multivariate Normal distribution, N(Oy,,X),

— i 2 <2 2
where X = diag(o;, o5, ..., GNk).

C. Chance-constrained Policy-based Reserves

Considering o, as a participation factor in the provision of
reserves by generator g, we define an affine reserve policy
such that when activated in real-time, the total generation
from g is given by p, = p, — A0i.

In the proposed day-ahead market clearing mechanism,
optimal hourly reserve policies characterized by a,, in



addition to the nominal hourly energy dispatch, p, for
each flexible generator are decided by the centralized MO.
The reserve policies, which are then activated during real-
time operation, define each generator’s participation in the
imbalance mitigation. Facing the uncertainty in wind power
forecast errors A, MO’s objective is to minimize the expected
cost of operating the power system. We consider quadratic
costs of generation and simplify the probabilistic expectation
term in the objective function, using the zero-mean property
of forecast errors, as discussed in [11]. Further, we consider
a single-node model of the transmission grid. The chance-
constrained optimization problem solved by the MO for joint
clearing of energy and reserves is formulated as

min. Y |CZ[p;+ (e Te)oZ] +CLpg (2a)

Pg 0% ¢€5

s.t. Y pe+ ) W=D (2b)
g€§ keX
Y a,=1 (2¢)
g€§
Plp, —Aay > 0] > (1—¢,), Vg €S (2d)
Plpg —Aag < pg™| > (1-&), Vg€G (20
PlAag < RgDN P> (1-¢), Vge€S (2f)
P[-Aa, <RZP™] > (1—-¢), Vg€S  (2g)
0<o,<1, Vgeg, (2h)

where CgQ and CgL are the quadratic and linear production
costs of generator g and e € RV is a vector of all ones.
Further, p§®*, RON™ and Ry™™™ are the maximum pro-
duction capacity, maximum downward reserve capacity and
maximum upward reserve capacity available with generator
g, respectively. P[] denotes probability and &, is the proba-
bility of the output from generator g to exceed the maximum
and minimum limits of production and reserve capacity.

Constraint (2b) ensures the supply-demand balance for
available point forecasts of wind power production, whereas
(2c) ensures that the total deviation from point forecasts
is exactly mitigated in real-time. These two constraints are
deterministic and independent of wind power production re-
alizations, thus ensuring security of supply for the inflexible
demand for all realizations of the uncertainty.

Chance constraints (2d)-(2g) limit the probability of viola-
tion of bounds on net generation and activated reserves for all
realizations of the uncertain parameter A to at most &. The
choice of risk parameter &, influences the conservativeness of
the market clearing solution, with smaller values leading to
a higher cost of operation. To study properties of the market
clearing mechanism (2), we now introduce a linearized
reformulation of the chance constraints inspired by [18], by
adopting the following assumption.

Assumption 2: The participation factors, ¢, Vg € G, char-
acterizing the affine reserve policy are non-negative, as
enforced by (2h).

Remark 2: While it is intuitive to assume that o should
be considered non-negative, it may be beneficial to drop
this assumption when working with a more realistic power
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Fig. 2: Interaction between a flexible generator g and the
market operator. Superscript * denotes optimal values.

system model that considers the transmission network or has
elements such as energy storage. In that case, the resulting
problem is a second-order cone program, evaluating the
market properties of which is left for future work.

Under Assumptions 1 and 2, using [19, Theorem 10.4.1],
the problem (2) can be exactly reformulated as a convex
quadratic program in (pg,0,), denoted by P, i.e.,

min. Y |C2[p;+ (e'Ze)af] +Chp, (3a)
Pg, % g€g
s.t. Y pe+ ) W= APA (3b)
g€§ keX
Yo =1: A% (3c)
8€S
cp(l e o,/ (eTZe) >0, Vg€ G (3d)
Pe +<I>(_117£g>ag\/ (e"Xe) < pg™, Vge G  (3e¢)
— @(ILS ) Olg (eTZe) < RgDN’maX, Vge§ (3F)
CID(_ e & (eTZe) <RY"™X Vg€ G (g
ogaggl, Vgeg, (3h)

where @, ! is the inverse cumulative distribution function
or the quantile function of the standard Normal distribution
N(0,1). The risk parameter &, is chosen from the domain
[0, 0.5), such that @(11_ &) is always positive [18]. Note that
all constraints are linear.

In problem P, the dual variables of constraints (3b) and
(3c), provide the market clearing price for energy, AP and
reserve policies, ARP which are then used for remuneration
of the generators for energy p, and reserve participation 0o,
respectively. The interaction between a flexible generator, g
and the market operator is illustrated in Figure 2.

In practice, it can be expected that hour-ahead of real-
time operation, when the uncertainty in forecast is consid-
erably reduced compared to the day-ahead stage, the market
operator broadcasts the best estimate of “realized forecast
errors” A which is used by flexible generators with non-zero
0, to adjust their real-time production for the next hour.
Any remaining instantaneous errors are considered to be
handled by primary frequency control or spinning reserves.
This eliminates the need for an additional real-time balancing
market, prevalent in current practice, in the proposed policy-
based market clearing mechanism.



D. Mathematical Interpretations of Problem P,

1) As an equilibrium problem: In alignment with the
discussions in [20] and [21], problem P, can be expressed as
an equilibrium problem, wherein each market player solves a
profit maximization problem while being connected through
market clearing conditions (supply-demand balance). For the
flexible generators, the profit maximization problem is

(APApg +ARP orp)

—[C2(p2+ (e"xe)ad) +Chp,]
st.  (3d)—(3h).

max.
Pg,0g

Vgeg

Unlike the flexible generators, the wind farms have no profit
maximization strategy considering they have a zero cost of
production and no cost associated with spillage of excess
wind. Similarly, inflexible demand is considered to have no
profit maximization role in problem P... However, the MO
enforces the constraints (3b) and (3c), which are the coupling
constraints that connect the flexible generators, wind farms
and the inflexible demand.

2) As a non-cooperative game: The optimization problem
P can be interpreted as a non-cooperative game among
two sets of players. First, the flexible generators g € G,
while operating within constraints of their production and
reserve capacities, try to maximize their profits (or minimize
their costs) from participation in the market for energy and
reserves. Second, the MO who acts as a “price setter” to
ensure that the market price for energy and reserves are set
at as low values as possible, so that the inflexible demand D
can be met at the lowest cost possible.

We define x, = [p, @] as the decision vector for the
flexible generator g, such that x, € K, where K, C R% is its
strategy set, from which its choices for the bid quantity p,
and participation factor ¢, are drawn. Similarly, we define
A = [APA ARPIT a5 the decision vector for the MO, such
that A € Ky o where Kyo C Ri. The cost function for the
flexible generator g can thus be expressed as

To(xg, A) = (xg QeXg + Ly xg) — Al xg, Vg €Ky, (5)

where A denotes cleared market prices and represents deci-
sions made by all other participants of the game i.e. the MO
and flexible generators other than g, in the cost function for g.

c? 0 CL
The costs Q, = 0 CgQ (eTZe) and L, = 0 represent

the quadratic and linear costs for g.
Similarly, the MO is subject to a cost function which can
be expressed as

Ino(A,xg) =STA, VA € Kyo, (6)

—Yeeg Py — Yhex Wi+ D
- ZgES O _+ 1 .
sions made by other players, i.e. all flexible generators g € G.

III. EVALUATION OF MARKET PROPERTIES

In this section, the problem definition and interpretations
presented in section II are used to evaluate market properties
of problem P..

where § = { ] represents the deci-

A. Existence and Uniqueness of Nash equilibrium (NE)

Let I'(Z,K,{Ji}icz) denote the non-cooperative game
among the flexible generators and the market operator, where
Z = (GU{MO}) denotes the set of all players and K =
[LKi=(Ki xKyx---x Kn, x Kmo) denotes the strategy set
for the game. Further, the decision variables of all players
can be stacked to define a simultaneous strategy vector
z=[x - x,—\r,g AT]T, such that z € R2™s+1) contains the
strategy decisions of each of the players as a response to
other players’ actions.

Proposition 1: For the non-cooperative game among flex-
ible generators and the market operator, T(Z,K,{J;}icz), a
Nash equilibrium exists.

Proof: A simultaneous strategy vector z* € K is a Nash
equilibrium if and only if

Ji(z},75) < Ji(zi,25,), Vi €K, Yie Z. (7)

To prove that Nash equilibria exist for the game I, we
employ a theorem presented in [22, Theorem 1]. In the
game I, each flexible generator g has a strategy set K,
formed by the upper and lower bounds of production and
reserve capacities, while the market operator has a strategy
set Kpo which is formed by the non-negativity bounds as
well as price caps set for the market clearing. This satisfies
the condition of compactness and convexity for K;. Further,
the cost function J, in equation (5) is quadratic and thus,
continuous over z and convex over x, for fixed values of
Xy =Xy, V¢ € (§—{g}) and A = A. Likewise, the market
operator’s cost function Jysp, given by equation (6) is linear
and continuous in z and convex over A for fixed values of
Xg =Xg, Vg € G. From [22, Theorem 1], this proves that at
least one Nash equilibrium exists for the game T [ ]

The vector(s) z* are a set of strategies for the i players of
the game I' in which each player chooses the best response
to other players’ decisions, implying that no player can lower
their cost by unilaterally deviating their action from z; to any
other feasible point, Z;.

Proposition 2: For the non-cooperative game among flex-
ible generators and market operator, T(Z,K,{Ji}icz) a
unique Nash equilibrium exists.

Proof: This is proven by employing tools from Vari-
ational Inequalities (VIs) and their equivalence with Nash
equilibria. For the game I', under the assumption that the
game is played only by market players who have been
dispatched or committed, the strategy sets K; for flexible
generators are compact, convex and nonempty. Further, as
discussed in Proposition 1, the cost functions J;(z;,z—;) for
every fixed z_; € K_; are differentiable. Upon satisfaction of
the above conditions, [15, Proposition 1.4.2] allows us to
express the problem of finding Nash equilibria for I" as a
VI(F,K) problem with

ViJi(zi,z-1)

F(z) = ®)

VN IN, (2ng 5 2N, )
VyoIuo(zmo:z-mo)



and K = [[;K; = (K1 x Ky X -+ X Ky, % Kuo), as defined
before. The vector F(z) € R*Mst1) is also referred to as
the “game map” for I'. To prove the singleton nature of the
solution set SOL(F,K) to the VI(F,K) (and by equivalence,
as per [15, Proposition 1.4.2], uniqueness of Nash equilibria
for I'), we compute the Jacobian, JF(z) € R2(Net1)x2(Ne+1)
of the game map, presented in Appendix A. As it can be
observed, JF(z) is symmetric which implies that there exists
an equivalent optimization problem solving VI(K, F), whose
first-order optimality conditions are given by JF(z). This
optimization problem is identical to P.. which has a convex
quadratic objective function and thus, has a unique minima.
Thus, by equivalence of the optimization problem P.. with
the VI(K,F) and game I" (per [15, Proposition 1.4.2]), we
show that I" has a unique Nash equilibrium. [ ]

B. Desirable Market Properties

Building further on the discussion regarding existence and
uniqueness of Nash equilibria, the following evaluates the
satisfaction of the desirable market properties [16] by the
solution to problem P..

Proposition 3 (Cost recovery for flexible generators): An
optimal solution to P.. ensures a non-negative payoff for
the flexible generators under all possible market clearing
outcomes and uncertainty realizations.

Proof: Mathematically, the non-negativity of payoff for
flexible generators holds true if, at the optimal solution

(ADA*p:, + ARP*(X;)
— [C2(pe +(e"Ze)a.®) + Cep] >0, Vg, (9)

where the superscript * indicates the optimal values for
Pe, O, APA and ARP. To prove the satisfaction of con-
dition (9), we first formulate the dual problem for each
flexible generator’s profit maximization problem, discussed
in (4). Defining a set of Lagrangian multipliers, & =
{ug, T, pN, pg¥, Xxg, Xg} for the constraints (3d)-(3h),
the dual problem can be formulated as

min. Hopg™ + p;,) NR?N’maX + pg +Xe
s.t. —lDA+2Cé,ng+C§—gg+ﬁg:O i Dg
—ARP 128 q, — X, %y
1 T _
+<I>(178g)\/e Ze(ﬂg — I,
—pN+pgT) =0 oy

Hes Hgs P~ Py Xgs Xg >0

P REP,max

Vgeg§

(10)

It should be noted that the dual problem (10) has an objective
that is a sum of products of non-negative parameters and
variables and thus, is always non-negative. Strong duality
theory enforces primal (4) and dual (10) problems to have
identical objective functions at optimal solution. Thus, (9)
holds true for all market price and uncertainty outcomes. M

Proposition 4 (Revenue adequacy for the MO): An opti-
mal solution to P.. ensures that the market operator never
incurs a financial deficit for all possible market clearing
outcomes and uncertainty realizations.

Proof: At the optimal solution to problem P, we
multiply the equality constraints (3b) and (3c) with the
optimal market clearing prices (APA*, ARP*) and subtract (3c)
from (3b) to obtain the following

(),DA*D— ARP*) _ Z A,DA*p; =+ Z lDA*Wk
g€§ keX
=Y AR
8€$
The left-hand side of (11) is the total payment from loads less
the reserve policy payments made to flexible generators by
the market operator. Under any realization of wind forecast
errors A in real-time, the right-hand side of (11) equals to
the left-hand side considering that constraints (3b) and (3c)
are strict equalities that are satisfied at the optimal solution.
The MO, therefore, never incurs a financial deficit. |
Proposition 5 (Market efficiency): Under the assumption
of perfect competition, the market clearing problem P,
ensures maximization of social welfare, such that no market
participant desires to deviate from the market outcomes.

Proof: In an efficient market, social welfare is max-
imized and no market participant desires to deviate from
the market outcomes, meaning that each market player
maximizes their profit at the optimal solution of P¢.. This is
proven, under the assumption of perfect competition among
flexible generators, by the identical Karush-Kuhn-Tucker
(KKT) optimality conditions of P, and the equilibrium prob-
lem interpretation discussed in section II-D.1. The identical
KKT conditions are presented in Appendix B. [ ]

Proposition 6 (Incentive compatibility): Under the as-
sumption of perfect competition, the market clearing problem
Pec is such that each player can maximize its objective just
by acting according to its “true” preferences.

Proof: Incentive compatibility implies that it is optimal
for each participant to offer their production and reserves at
a price equal to their “true” production cost. We define a
bid made by a flexible generator g to MO prior to market
clearing Pcc, By = [(CgQ7C§)7xg] as a true-cost bid if the tuple
(CgQ,Cg,‘) represents its true production cost. From the game
interpretation of P discussed in section II-D.2, the cost
function for generator g at optimal solution (xg, A*) is

To(xp, A) = (5T Qe+ Ly x3) — AT, Wxg €K, (12)

If a generator were to bid, By = [(CS,CL),x,] with a cost
tuple (CZ,CL) higher than its true-cost tuple, which is the
only rational deviation from a true-cost bid, the resulting
cost function at the solution is given by (13) below. Note
that, under the assumption of perfect competition, the opti-
mal market clearing prices A* are independent of a single

generator’s bid.
To(%5, A) = (%5 Qo + Ly X5) — AT %5, Vxg €K, (13)

Comparing (13) with (12), we point out that Jg(i;‘,,A*) >
Jg(xg, A*) because from the proof of Proposition 1, %y is a
feasible suboptimal value for x,. Thus, true-cost bidding is
the dominant strategy for flexible generators. [ ]
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Fig. 3: Market clearing problem Pg: Average expected
end-of-day operations cost and its variability, considering
different values of MRR.

IV. CASE STUDY

Data from a 24-bus system outlined in [23] is adapted to
form a single-node electricity supply system with 6 wind
farms. Each wind farm has an installed capacity of 200 MW
and the power production from it has a zero-mean normally
distributed forecast error with standard deviation, o} equal
to 7.5% of installed capacity, as in [24]. Thus, problem
P.c is solved considering the standard deviation of total
forecast error as X = Y, 0;. The value of risk parameter,
g, for all generators is fixed as 0.05. The peak demand in
the simulation time horizon of 24 hours is 2,650 MW. The
cost and capacity data of the flexible generators as well as
the demand data is available as an online appendix in [25].

To highlight benefits of the proposed policy-based reserve
procurement and operation, a deterministic benchmark (Pge;)
with energy and reserve co-optimization is set up. As for-
mulated in Appendix C, the MO solves a day-ahead market
clearing problem with an exogenous MRR, obtaining the
optimal power dispatch as well as procuring the reserves
needed. During real-time operation, through another market-
based mechanism, reserves are activated based on the bounds
defined by day-ahead reserve allocation. In the absence of
currently operational joint clearing of energy and reserves in
the European electricity markets, this benchmark reflects a
natural extension to the sequential market clearing approach.

The parameter MRR for the problem Py is obtained
by performing Out-of-Sample (OOS) simulations for 1000
scenarios of wind forecast errors to evaluate the expected
end-of-day system operations cost while gradually increasing
MRR, as shown in Figure 3. The orange line denotes the
average value, boxes represent 25th and 75th percentiles
and the whiskers extend to 5th and 95th percentiles. Red
diamonds show the outliers. At low values of MRR, the
expected cost of operation is observed to be high and has
high variability due to load shedding in several scenarios of
uncertainty realization, while at high values the cost increases
due to the higher cost associated with over-dimensioning of
reserve requirements. For comparison with results from the
market clearing proposed in this paper, we fix the value of
MRR at 200 MW.
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480 1

460 1

4404

4201

Expected End-of-Day Cost [kEUR]

e
=)
S

phi

10 15 20 25 30 35 40
Degree of Unbiasedness,
Fig. 4: Market clearing problem P.: Average expected
end-of-day operations cost and its variability, considering
different values of 7.

First, biased OOS simulations? are performed wherein the
1000 scenarios for wind forecast errors are drawn from a
Normal distribution identical to that assumed by the chance
constraints in problem P.. for reformulation of the objective
(3a) and chance constraints (3d)-(3g). It is expected that mar-
ket clearing problem P.. should outperform Pge, resulting
in lower system operations cost. This stems from the fact
that problem P.. provides an optimal solution with respect
to this uncertainty distribution.

To study unbiased OOS simulations, considering the same
set of scenarios, we replace the standard deviation, ¥ in
problem P.. with (y*X), such the parameter y represents
the degree of unbiasedness of the probability distribution
assumed in P... Figure 4 shows the variation in expected end-
of-day system operations cost with ¥ (green diamonds show
the outliers). The red horizontal line indicates the average
expected end-of-day cost for the benchmark market clearing
Pyet» operating with an MRR, Mg = 200 MW. The case
of y=1 is equivalent to the previously discussed biased
0O0S, considering that the probability distribution assumed
in problem P is identical to actual wind forecast errors.
For y < 1, the problem P.. underestimates the actual wind
forecast errors, resulting in lower costs of day-ahead reserve
procurement. However, with the reserve control policy in
place, the MO is able to successfully mitigate the imbalances
in real-time at a low cost. For values of 7y larger than 1, the
problem P.. overestimates the actual wind forecast errors,
thus resulting in higher costs of reserve procurement to
ensure mitigation of imbalances in real-time. For y > 4, we
observed infeasibility of the market clearing problem P, as
we reach the limits of available reserve capacity from the
generators to successfully mitigate the imbalance. Table I
presents a comparison of average expected system operations
cost for market clearing using problem Py, with that using
P for a selection of values of y. As it can be observed,
market clearing problem P leads to a reduction of 5.4%
in the average expected end-of-day system operations cost

2Here, the notion of OOS simulations refers to the different second
moments, X of the Normal distribution from which scenarios of actual wind
forecast errors are drawn. In contrast, stochastic programming literature
typically considers random scenarios drawn from other distributions as OOS.



TABLE I: Comparison between average expected costs ob-
tained from Pger and P

iPdel 3)cc chc ch
Costs €] |y —200MW | y=05 | y=1.0 | y=3.0
Operations 401.4 398.2 400.9 408.0
Reserves 70.2 0.6 2 38.1
Total 471.6 398.6 402.9 446.1
Change [%] - -155% | -14.6% | -5.4%
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compared to Py, even if the actual wind forecast errors are
over-estimated by a factor of 3 (y = 3). Results of the case
study demonstrate the resilience of proposed market clearing
problem P.. to large forecast errors within the normally
distributed forecast error assumption.

A short discussion on the day-ahead market clearing
outcomes of Py and P follows. Figures 5a and 5b show a
comparison of the optimal dispatch of the flexible generators
and wind farms to meet the inflexible load for Py and Pe..
While reserve capacity is scheduled in the Pge; case, in P
explicit capacity reserve procurement is replaced by control
policies, characterized by «,. Optimal day-ahead price for
energy, APA and for the reserve policies, lRp(in Pee) for
Hours 10 through 15 are shown in Figures 5c and 5d. Hours
with higher wind power forecast, ¥;cqc Wi, result in lower
prices, APA for both Py and P.., owing to the zero marginal
cost of wind farms. Moreover, as observed in Figure 5d,
higher values of the y result in a higher price of reserve
policies, ARP signifying the overestimation of actual wind
forecast errors by the market clearing problem, P... Figure
6 shows the allocation of the participation factors, @, for the
same hours among the generators having available reserve
capacity. It is observed that the more expensive generator
G4 is allocated non-zero @, in the hours with high share of
wind and with higher values of 7.

V. CONCLUSION

We proposed a market clearing mechanism for day-ahead
electricity markets that co-optimizes energy and control
policy-based reserves using chance-constrained optimization
techniques. Using tools from equilibrium modeling and Vs,
we proved the existence and uniqueness of Nash equilibria
for this market clearing. No desirable properties inherent
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to the prevalent deterministic market clearing are lost in
the proposed chance-constrained policy-based market clear-
ing. Under assumptions of proper uncertainty modeling,
we demonstrated the reduction in average expected system
operations cost over a deterministic benchmark.

In future, the suggested non-requirement of energy redis-
patch should be further studied to determine its impact on
system reliability and primary frequency control, considering
that the estimation of the frue moments of uncertainty
is challenging. Evaluation of the properties of proposed
policy-based reserve procurement considering the temporal
and spatial correlation of uncertainty, a power system with
congested line capacity limits and generic control policies
defined to include other flexibility sources (e.g. demand
response, energy storage) also remain topics for future work.

APPENDIX
A. Game Map for T’

The Jacobian matrix, JF(z), of the game map F(z) for the
non-cooperative game I, discussed in section III-A is

r2c? 0 0 0 -1 0]
0 2c%e’ze) - 0 0 0 -1
0 0 208 0 -1 0
0 0 0 205 (e'ze) 0 -1
-1 0 -1 0 0 0

L 0 -1 0 -1 0 0

B. KKTs of Optimization Problem P,

Considering £ as the Lagrangian function for the opti-
mization problem P, its KKT optimality conditions are
given by (14). Its equivalent equilibrium problem (discussed
in section II-D.1) has an identical set of KKT conditions.

(3b) — (3¢) (14a)
9L Q L DA m
ﬁzzcgpgjucg—x — B, +H, =0, Vg (14b)
8
oL _
ai(xg = 2Cngcg — ARP —X, +X, +CI>(11_£g) vV eTZe(Eg
—H,—pgN+pg)=0,Vg  (l4o)



0< (pg DL, 0%/ (€TZe)) Lu >0, Vg (14d)
0< (py c1>(l e O (e"Xe)) L, >0, Vg (l4e)

0< (RPN “m+c1>( ! e O/ (€TZe)) L peN >0, Vg (146)
0< (RYF™™ — qnaleg)ag (eXe)) Lpg¥ >0, Vg (l4g)
0<op Ly, >0, Vg (14h)
0<(l—a) L%, >0, Vg (14)

C. Deterministic Benchmark, P g,

The day-ahead deterministic co-optimization of energy
and reserves solved by the MO is given in problem (15).

min. Y [CEp;+Clpg+CER,] (15a)

Pe:Rs 2€$

s.t. Z Pg+ Z Wy = - \PA (15b)
g€S§ keX
Y R, > Mg (15¢)
g€s
0< pg<p™, Vge§ (15d)
0< Ry <RI™, Vge§ (15¢)
pgt Ry < p™, Vg€ § (15f)
pg—Ry >0, Vge g, (15g)

where the MRR, My is an exogenous parameter, Cg denotes
the cost of reserve procurement and (pg,R,) represents the
set of power dispatch and reserve allocation for generator
g. The real-time balancing market clearing, formulated in
problem (16), activates the reserve energy from flexible
generators, re, limited to the optimal reserve capacities R,
allocated day ahead (constraint (16c)). Further, considering
that the actual forecast error A could take extreme values in
some cases, real-time balancing allows for wind spillage, WSp
at zero cost and load shedding, D" at CVeLL = €500/MWh

min. Z [CgQ(P; + rg)2 4 Cé(Pg* + I‘g)} 4 CVoLL pysh

re.DMWP oSG

(16a)

S.t. Z Fg= A (16b)
g€§

—Ry<r, <Ry, Vge§ (16¢)

0< D <D (16d)

0 < WP < Wi+ &), VkeX. (16¢)
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