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Abstract—A major challenge in power system operation is the
integration of renewable energy in-feed in large scale. Currently,
the responsibility to cope with uncertainty in power injection
is transferred to a central authority, i.e. the system operator,
while renewable energy in-feed is supported via a tariff system.
In this paper we propose market participation of wind farms in
combination with a third-party energy storage. A novel concept
of storage capacity reservation is presented, where the wind
power producer hedges unfavorable wind power realizations
with a third-party storage. In a day-ahead scheduling stage,
profit maximizing bids for the day-ahead market are stated
incorporating costs of storage reservation. During an intra-day
stage, the storage device backs up the wind power producer
by tracking its day-ahead market bids. In a simulation study
we show that after the consideration of the costs of storage
reservations and storage operation, the proposed model can lead
to profitable operation of wind power plants while minimizing
the profit variability.

Index Terms—Electricity Markets, Renewable Energy Infeed,
Storage

I. INTRODUCTION

The integration of fluctuating renewable energy sources
(RES), which are characterised by their high variability in
power injection, is a major challenge in power system opera-
tion. In electric power systems a balance between generation
and consumption has to be remained. Therefore, on the one
hand, fluctuations of subsidized RES have been compensated
primarily by ancillary services provided by flexible generation
sources. Thus, the integration of high shares of RES into the
electricity grid is expected to result in higher costs of power
system operation [1]. On the other hand, current electricity
market frameworks mandate the submission of generation
schedules in the form of price/quantity bids prior to actual
power generation. Differences between the contracted and ac-
tual production lead to imbalance payments, where generators
are penalized for deviations from their scheduled production
plan. Therefore, the rising costs of system operation can be
mitigated if wind power plants have to participate in the energy
markets and are obliged to remain their announced schedule.
However, RES face difficulties in matching their schedules
due to imperfect wind forecasts, which makes this option very
costly for the wind farm operators.

In this paper we propose a framework in which wind farms
bid into an electricity market and contract a storage provider
to compensate for deviations between the forecast and the
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actual wind power realization. The model comprises a day-
ahead (DA) scheduling stage, where storage capacity can be
reserved, and an intra-day (ID) stage where deviations by the
wind producer are compensated through the storage device.
By avoiding costly imbalance payments the framework may
enable profitable market participation of a wind farm. In the
DA stage, optimal hourly bids are determined. A novel concept
for storage capacity reservation, which acts as a hedging
mechanism against unfavorable wind power realizations, is
introduced. Storage devices need not to be owned by the wind
power plant. The ID stage of the model involves the operation
of the storage device. The increase in accuracy of wind power
forecasts with shrinking forecast horizon is utilized by Model-
Predictive-Control (MPC). The control strategy also decides
on adjustment bids for the ID market.

The contributions of this paper are threefold: First, we
propose a model for strategic bidding of wind power plants to
minimize the risk of imbalance penalties. Second, we quantify
the benefits of storage as compared with the situation when
a wind power plant participates in electricity markets on its
own. Third, we estimate the incremental cost of using storage
resources for mitigation of power imbalances in the electricity
grid caused by wind power plants.

There exists a rich literature on dealing with wind uncer-
tainty in power systems. Stochastic programming, incorpo-
rating uncertain wind power forecasts and market prices as
stochastic variables, may be used to develop models which
result in optimal bidding strategies for a wind power producer
participating in electricity spot markets on its own e.g. [2],
[3], [4], [5]- The design of financial products for hedging is
proposed in e.g. [6]. Various other approaches for the operation
of a storage device in combination with a wind power plant are
presented in e.g. [7], [8], [9], [10]. These works either do not
consider a DA/ID market framework or do a joint optimization
of a wind farm with storage which assumes that the storage
be operated from the same stakeholder.

The remainder of this paper is organized as follows. Section
II describes the proposed DA scheduling methodology. Section
IIT describes the ID market operation. Section IV explains the
simulation setup and in section V results are presented. Section
VI concludes the paper and outlines further work.



II. DAY-AHEAD MARKET OPERATION

A. Uncertainty in Wind Power Injection

The hourly output of a wind farm is considered to be a
random variable X with a continuous probability distribution
function, P(X), such that:

P(X):f(ﬂ7gapa"')v (D
where u, o, p, --- represent the parameters of the distribu-
tion function, f, namely, expected value, standard deviation,
skewness, etc.. This model allows the use of any continuous
probability distribution function (pdf) for characterizing the
uncertainty in wind power forecasts, provided that (a) its pdf
and cumulative distribution function (cdf) can be expressed an-
alytically, and (b) the inverse cumulative distribution function,
or quantile function exists. In our model wind power injection
is characterized by a normal distribution function [11], where
the point forecast is the expected value. The standard deviation
is expressed as a function of the ratio between the point
forecast value and the rated capacity of the wind power plant.
The function can be determined via fitting methods and the
analysis of historical data.

B. Problem Formulation

While deciding on bids for the DA market, the wind
power producer must consider an uncertainty in wind power
production. The assumptions for the bidding in the DA market
are that there are capacity limits of the storage device, and the
prices for the DA market are assumed to be deterministic and
known. The optimization problem is defined as:
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where

I I Expected imbalances (MW),

b, b Upper and lower bounds (MW) for DA mar-
ket bid By,

C}f,C,‘f Up (charge) and down (discharge) storage
capacity reservation (MW),

)\,CL“,)\gd . Storage reservation costs (€/MW) in the up

(charging) and down (discharging) directions
for the hour h.

h . Hours of the day (1,2, --,24),

Xy Random variable for wind power (MW) outcome,

Wy @ Available point forecast for wind power (MW),

B, : Bid MW) in DA market,

ap  :  Risk tolerance factor which decides the position
of bounds, such that ay, € [0,1),

R, : Ramping energy (MWh) between hours,

Sy 1 Expected use of storage (MW),

&1 : Quantile function or inverse cdf,

P :  Fixed parameter to control the strictness of
energy-neutrality requirement in DA bids,

) :  Maximum change in bids allowed in bids be-

tween subsequent hours (MW/hour),
)\EA . DA market price (€/MW) forecast,

A Penalty for ramping energy (€/MWh),
)\L :  Penalty for imbalances (€/MW),

A} @ Cost for storage operation (€/MW),
Ap . [ )\DA )\Cu )\Cd )\R AL ]

The objectlve functlon in the optimization problem com-
prises two terms which are related to each other via p € [0, 1].
In the first term, the bids for the DA market are decided based
on a trade-off between the expected revenues from the DA
market and the costs associated with it. These costs 1gclude
the reservation costs for storage capacity, A lh' and )\h , and
the costs of imbalances penalties, A},. The second term in the
objective function incentivizes energy-neutrality of the bids
during the day. It relates bids in the DA market to the realistic
operation of storage device during the next day. It implies that
the expected energy for charging the storage device should be
as close as possible to the expected energy of discharging.
This is a crucial consideration for achieving the decoupling
of the storage device from the wind power plant. Thus, if p
is chosen equal to 1, the energy neutrality term is eliminated
from the optimization problem.

Constraint (3) provides bounds for the choice of ay. The
decision variable o, indicates the preference to place bids, By,
different from the point forecast, Wj,. Variable o, defines an
interval for the bounds [bd by ], within which the bid for the
hour is chosen. In the absence of storage, or if the cost of
storage is high, «, is close to zero and the bounds are close
to the point forecast, Wj,. Since W), represents the expected
value of a random wind power realization, X}, there is a risk
of paying for imbalances involved with bids different from
W), The bounds b¢ and bY, defined in equality constraints in
(4) and (5), are calculated from the inverse cdf, or quantile
function of the probability distribution of X} for a chosen
value of ay. The bounds may be symmetrical around W,
depending on whether the probability distribution P(X}) is
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Fig. 1: Trade-offs in the DA optimization problem which influence the choice
of the optimal bid By,.

symmetrical around W},. Constraints (7) and (8) determine
the storage capacity, C}' and Cg, to be reserved. The storage
capacity reservations are determined by the distance of the bid
By, from the corresponding upper bound b;' and lower bound
b respectively.

In case of high shares of wind energy, flexible thermal
units in the power systems may need to accommodate fre-
quent changes to their scheduled production. This leads to
higher costs involved with frequent ramping of thermal units.
Therefore, the system operator may impose restrictions on
wind power producers with regards to changes between sub-
sequent hourly bids. Constraint (9) penalizes extreme changes
in the bids between subsequent hours. Constraints (10) and
(11) penalize expected imbalances. Imbalances are expected
for wind power realizations which lie outside the interval
[b}f, by 1, where the reserved storage capacities are not enough
to accommodate the difference between bid By, and the wind
outcome Xj,. Constraint (12) defines the expected storage use
for each hour during the actual production in the next day.
Fig. 1 demonstrates the trade-offs in the optimization problem
and the choice of optimal bid B;, within the bounds defined
by b¢ and b¥.

III. INTRADAY MARKET OPERATION

An ID market with continuous trading is considered. There-
fore, the risk that bids in a hourly ID market may not be
cleared because of a lack of a suitable counter-party are
reflected in terms of higher costs associated with the bids
in this market. This provides a preference for operating the
storage, whenever feasible. The objectives of the ID market
operation stage are first that the contracted production schedule
received from the DA market clearing should be tracked,
such that imbalance penalties are minimized. Second, the
storage device should be operated within the limits of reserved
capacity obtained from the results of the DA scheduling stage.
Third, suitable adjustment bids for the ID markets should be
prepared. These adjustment bids have to mitigate the imbal-
ances occurring when the power reservations for storage or the
energy content of the storage device are not sufficient. Further,
the adjustment bids maintain the daily energy neutrality of the
storage device.

A MPC based operation framework is used. MPC is a broad
term for any control formulation where an optimal control
trajectory for a given system is obtained through solving a

cost minimization problem. The first step involved in MPC
is the mathematical modeling of the underlying system. State
space models are most commonly used for this purpose. Ref.
[12] provides a detailed discussion on designing aspects of
MPC systems and their implementation. In each hour, the op-
timization problem is solved to obtain the charging/discharging
schedule for the storage device for the next hour along with
the ID adjustment bids. The scheduled operation is undertaken
irrespective of the wind realization in the next hour. This is
because the storage device is decoupled from the wind power
producer and hence it doesn’t provide real-time imbalance
mitigation support. The ID market optimization problem is
defined as follows:
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Pychea(h) DA scheduled power (MW) in hour h,
C’g, Ccy Discharging/Charging capacity reserva-

tions (MW),

Maximum adjustment bids (MW) allowed

in the ID market,

Minimum and maximum operating limits

allowed for energy content (MWh) in the

storage device,

Discharging/Charging power

storage device,

Adjustment bid made in the ID market,

h) : Controller output, in-feed to the grid (MW),

h) : Error (MW) in tracking the DA scheduled power,

h) : Energy Content (MWh) of storage device at the
start,

max max
P, Py

Emi’ru Emaw :

from/into



u(h) Control vector ([Pp Pc Pp  Ps)),
v(h) Best available wind forecast,

w(h) Auxiliary variable (MWh),

Qimb Cost for errors in meeting schedule,

Qcon Costs for control variables,

Qex Cost for exceeding storage operating limits,

T :  Time of operation (1 hour),

Es(h): Energy stored in storage device at the start,

Ps(h):  Power in-feed into the grid from wind and storage
ensemble,

Py (h): Best available forecast for wind power,

np,Nc: Discharging/Charging efficiency of the storage

device.

In addition to the penalty for errors in tracking the DA bids,
Qimp, the objective function includes the cost for the control
vector, 2.on, and the cost of exceeding the storage operating
limits, Q. The risk associated with a continuous trading
mechanism in an ID market is accounted for in the cost
vector via a higher preference for storage operation over the
ID market bidding. In order to maintain the energy-neutrality
of the storage device, the adjustment bids are designed in
the ID market such that the net earnings from participation
in hourly ID markets over the optimization horizon are
maximized. This is accomplished through a higher preference
for buying bids in the ID market in hours when market
prices are expected to be low and vice-versa. Constraint (21)
allows the violation of the operating limits of the energy
content of storage at high costs. Constraint (15) ensures
that the storage device is not charged and discharged at the
same hour. Constraint (16) allows only buying or selling bids
in every hour. Constraints (17)-(20) provide bounds on the
control variables. The hourly storage capacity reservations
received from the DA scheduling stage are enforced as upper
bounds for storage operation. The bounds on maximum ID
adjustment bids are pre-defined. The change in energy content
of the storage device with time is quantified in (23), while
the output from the system is defined by (24).

IV. SIMULATION SETUP

To validate the performance of the model, four cases are
defined with regards to dealing with uncertainty in wind
power availability. Table I summarizes the characteristics of
these cases. Simulations for a time period of 10 days are

Case
Perfect Forecast (PF)

Description

Perfect Wind Forecasts, No storage requirement,
No ID market participation

Uncertain wind, No storage access, With ID
market participation

Uncertain wind, With storage, No ID market
participation

Uncertain wind, With storage access, With ID
market participation

Only ID (OID)

Only Storage (OS)

Storage+ID (SID)

TABLE I: Summary of the various cases.

performed for each of the cases. In all cases, a wind power
farm is considered with an assumed installed capacity of 50
MW. The size of storage device of 20 MWh. Normalized
hourly values of wind power forecasts and actual injection

for Germany over the years 2007-2011 are used. The model
parameters used in the simulations are described [13]. The
problem in the DA scheduling stage is a constrained non-linear
optimization problem. The optimization problem for the ID
market is a quadratic program with mixed integer constraints.
Both problems are formulated in MATLAB using the YALMIP
toolbox and the latter is solved using IBM’s ILOG CPLEX
solver [14] [15].

V. RESULTS
A. End-of-day Profits

We evaluate the net profits earned at the end of each day
for the various cases discussed before. Profits at the end of
each day d are defined as:

Profits? = Revi)y + Reviy — Imb? — Stor?, (25)

where Revi, and Rev{, are the revenues of DA and ID
market operation respectively. Imb? and Stor? are the costs
of imbalances and storage. The end-of-day revenues from the
ID market settlements could be positive or negative depending
upon the sum of all buying and selling cash flows during
the day. The case PF is not associated with either of the

Expected End-of-Day Profits (kEUR)

; ; : ; . . . .
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Expected End-of-Day Profits (kEUR)
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Fig. 2: Expected profits earned at the end of the day for different cases.

two costs stated in (25). The profits in this case act as an
upper bound for the possible profits which can be made.
Fig. 2 shows that in the OID case, there are days when the
expected profits are negative. This occurs for days with low
profits even for the PF case, which indicates that a relatively
lower total energy volume is bid into the DA market on those
days and that attempts to manage imbalances only using ID
bids can be risky for such days. On the other hand, using a
storage device as in the other two cases, OS and SID, leads
to higher profits even after the costs of operating storage have
been taken into consideration. The benefit of using a storage
device becomes obvious if the variability in the end-of-day
profits is evaluated, as shown in Fig. 3. The box-plot shows
the descriptive statistics for the end-of-day profits in the OID
case, such that edges of the box represent the 25th and 75th
percentiles and red-colored ticks inside the boxes represent the
median value. The variability of profits indicated by whiskers
around the box represents 99% of occurrences. It can be
observed that in the OID case, the chances of making less
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Fig. 3: Variability of the profits earned at the end of the day for various cases.
The boxplot shows the statistical distribution of profits for the OID case.

profits and even negative profits is quite high. Thus, it can
be concluded that even after including the costs of storage
operation, OS and SID, profits in each day can be achieved,
without a downside risk in profit variability.

B. Cost of Storage for Imbalance Mitigation

For the OID and SID cases, Fig. 4 shows the average cost
of storage operation for incremental values of % imbalances
mitigated for the 10 days of simulation. Imbalances mitigated
in percent is defined as:

224:1 Deviations from schedule [MW] 26)
,2L4:1 Scheduled power [MW]

Imb = 100 x

These curves are obtained by changing the energy rating of
storage device (MWh) such that a saturation in % imbalances
mitigated could be reached. Fig. 4 shows that the Storage+ID
case is preferable over the OS because for the same cost
of storage, the percentage of imbalances mitigated in the
former is higher. As reasoned before, the absence of the
option to participate in ID markets leads to significantly higher
imbalances in the OS case.

Imbalances Mitigated vs. Expected Cost of Mitigation
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Fig. 4: Expected costs of using storage for imbalance mitigation for Only
Storage and Storage+Intra-day cases.

VI. CONCLUSIONS

This paper proposed a new method to assess the combina-
tion of wind farms with storage. The analytical properties of
probability functions have been used to determine the optimal

size of storage capacity reservation. Subsequently, Model
Predictive Control has been used to even out deviations from
the wind farm in the intraday market. It has been shown that
the combination of intraday market operation and contracting
third party storage is a profitable options for wind sites. In case
of intraday only operation wind farms can make losses through
imbalance penalties. Future research includes extension of the
model where the wind farm is not only a price taker but a
price maker, and the inclusion of a grid.
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