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“Of all the forces of nature, I should think the wind con-
tains the largest amount of motive power, that is, power to move
things. Take any given space of the earth’s surface, for instance,
Illinois; and all the power exerted by all the men, and beasts, and
running-water, and steam, over and upon it, shall not equal the
one hundredth part of what is exerted by the blowing of the wind
over and upon the same space.

. . . And as yet, the wind is an untamed, and unharnessed force;
and quite possibly one of the greatest discoveries hereafter to be
made, will be the taming, and harnessing of it.”

ABRAHAM LINCOLN
First Lecture on Discoveries and Inventions,

April 6, 1858.

“On November 6, 2011 at 2 am, 59.6% of Spain’s total power
demand was supplied by wind power.”

GLOBAL WIND REPORT
Global Wind Energy Council (GWEC),

March 2012.



Abstract

In this master thesis, a model is proposed to enable profitable market par-
ticipation of wind power plants considering the availability of second-party
owned energy storage. A novel concept of storage capacity reservations is
presented using which the wind power producer hedges against wind out-
comes which are unfavourable with respect to its day-ahead market bids.
The idea that wind power producers need not to own storage devices is
explored through decoupling of storage operation during actual energy pro-
duction from the participation in day-ahead markets. Hence, the overall
model is divided into two stages: day-ahead scheduling and intra-day oper-
ation.

In the day-ahead scheduling stage, profit maximizing bids for the day-ahead
market are prepared while in the intra-day operation stage, the storage de-
vice owner assists the wind power producer in tracking its day-ahead market
bids through suitable storage scheduling and through participation in intra-
day adjustment markets. The day-ahead market bids are decided such that
they are energy-neutral with respect to expected use of storage for imbal-
ance mitigation. This allows the storage device owner to efficiently plan its
operation schedule without worrying about overuse or under-utilization of
storage capacity by the wind power producer.

The model is validated by comparing it with the participation of wind power
plants in electricity markets on its own. The case study shows that even af-
ter considering the costs of storage reservations and storage operation, the
proposed model leads to maximization of profits for the wind power plants
while eliminating the profit variability.

Furthermore, the lost opportunity costs of having a joint wind-storage power
plant is avoided through decoupling of the storage device from wind power
producer. Mitigation of wind power imbalances can be seen as a secondary
function for the storage device while it can still participate in the electricity
markets on its own.
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Kurzfassung

In der vorliegenden Masterarbeit wird ein Modell vorgeschlagen, welches
eine profitable Marktteilnahme von Windkraftanlagen, unter Berücksichti-
gung der Verfügbarkeit von Energiespeichern im Besitz Dritter, ermöglicht.
Ein neues Konzept im Hinblick auf die Speicherreservierung wird einge-
führt um den Betreiber der Windkraftanlage bei ungünstigen Windverhält-
nissen in Bezug auf den Day-Ahead Markt abzusichern. Der Ansatz, dass
die Betreiber der Windkraftanlagen die Speichersysteme nicht selbst be-
sitzen müssen, ist durch die Entkopplung des Speicherbetriebes von der
Teilnahme an den Day-Ahead Märkten während der Energieerzeugung der
Windkraftanlagen gerechtfertigt. Daher wird das Gesamtmodell in zwei ver-
schiedene Stufen unterteilt: Day-Ahead Planung und Intra-Day Betrieb.

In der Day-Ahead Planung werden Angebote zur Gewinnmaximierung für
die Day-Ahead Märkte vorbereitet während im Intra-Day Betrieb der Be-
treiber des Energiespeichers den Erzeuger der Windkraft beim Erfüllen seiner
Day-Ahead Angebote mittels passender Planung des Speicherbetriebes und
Teilnahme am Intraday-Handel unterstützt. Die Day-Ahead-Angebote wer-
den so definiert, dass sie in Bezug auf die erwartete Speichernutzung en-
ergieneutral sind um den Schaden durch Ungleichgewichte zu minimieren.
Das erlaubt dem Besitzer des Energiespeichers eine effiziente Betriebspla-
nung ohne sich um über- oder Unterauslastung der Kapazität durch den
Windkrafterzeuger Gedanken machen zu müssen.

Das Modell wird durch den Vergleich mit der alleinigen Teilnahme von
Windkraftanlagen am Elektrizitätsmarkt validiert. Das Fallbeispiel zeigt,
dass auch unter Berücksichtigung der Kosten für Speicherreservierung und
Speicherung, das vorgeschlagene Modell zu einer Gewinnmaximierung der
Windkraftanlage führt, während die Variabilität der Gewinne eliminiert
wird.

Darüber hinaus werden durch die Entkopplung des Speichers vom Erzeu-
gungssystem die Kosten eines kombinierten Wind-Speicher-Kraftwerkes ver-
mieden. Der Ausgleich von Unregelmässigkeiten in der Windkrafterzeugung
können, während der primären Teilnahme am Elektrizitätsmarkt auch als
sekundäre Funktion des Energiespeichers gesehen werden.

v



vi



Preface

This thesis is a result of research work done at the Power System Laboratory
(PSL) of ETH Zurich during the last six months. Working on this thesis
has been informative, insightful and challenging yet an enjoyable experience.
This thesis concludes my Master’s studies at ETH Zurich. Hence, it is op-
portune to thank people without whom I couldn’t have made it so far.

Firstly, a special thanks goes to my supervisors Tobias Haring and Matthias
Bucher for their guidance and for the numerous interesting conversations
we have had in these months. I am also grateful to them for showing their
confidence in me by allowing me much room to pursue my own ideas and
explorations, while always being there whenever needed for critical discus-
sions.

I would also like to express my gratitude to Prof. Dr. Göran Andersson
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Chapter 1

Introduction

1.1 Increasing Share of Wind Energy

Wind power installations in Europe have been supported by subsidies and
incentives for over a decade now. These support schemes which include:
feed-in tariffs, feed-in premiums and green certificates among others, have
led to a steep rise in wind power installed capacity in Europe over the years,
as described in detail in [1]. Fig. 1.1, published in a recent report [2] by
European Wind Energy Association (EWEA), shows the growth trend for
cumulative installed wind power capacity (MW) and net energy production
(MWh) by off-shore and on-shore wind farms in Europe over the years. Fore-
casts for the future illustrate the continuing trend for growth of wind power
installations in the future.

Integrating wind energy, characterised by its high variability and low pre-
dictability, in the power system is a big challenge for grid operators. This
is because electric power system needs to be operated such that a balance
between generation and consumption of energy is maintained at all instants.
This challenge can be handled as long as the share of fluctuating energy in
the electricity grid is small such that the fluctuations could be compensated
for by the flexibility capabilities of conventional generators. With the boost
from these financial support schemes, the share of fluctuating in-feed in gen-
eral and wind power in particular is no longer marginal. Fig. 1.2, sourced
from the EWEA report [2], predicts the continuing trend for increasing share
of wind energy in the European electricity system, with an estimated share
of 20-28% expected to be attained by the year 2030.

On account of the intermittent nature of wind energy, integration of high
shares of wind into the electricity grid is expected to result in higher costs
of power system operation. These additional costs arise due to a variety of
reasons as discussed in [3]. However, in the context of this thesis, the study
in [4] is picked up for further discussion. It divides these additional costs
into two categories:

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Past trends and future scenario for installed wind capacity (GW)
and energy production (TWh) in Europe [2].

Figure 1.2: Past trends and future scenario for share of wind energy (%) in
the European energy mix [2].



1.2. MOTIVATION FOR THE THESIS 3

• Balancing Costs are short-term costs which arise from short-term
adjustments, over the time period from minutes to hours, needed to
manage the fluctuating in-feed from wind power plants.

• Reliability Costs are long-term costs which arise from the need for
maintaining additional power on stand-by mode as operational reserves
to ensure the supply-demand balance.

These short-term adjustments and operational reserves are usually provided
by fast-acting thermal generators such as gas turbines. Besides being ex-
pensive to run, these thermal generators also offset, to the some extent, the
planned benefits of reduction in carbon dioxide emissions by wind power
plants.

In addition to the grid integration costs, with increasing shares of wind en-
ergy, the existing support mechanisms for wind power plants are expected
to decrease. This can be foreseen to occur because wind power technology
is expected to mature and achieve economies of scale. Furthermore, partial
or complete withdrawal of support schemes would considerably ease the ex-
isting financial burden on governments. A very recent working document [5]
released by the European Commission issues guidelines on redesign of re-
newable support schemes in European countries. The report stresses on the
need for an overhaul in governmental support for renewable and for promot-
ing market participation of renewable energy sources in general and wind
energy in particular.

1.2 Motivation for the Thesis

The rising costs of grid integration and support mechanisms are expected to
act as strong drivers for wind power plants to participate in the European
electricity markets. However, the uncertainty in wind availability negatively
influences the competitiveness of these power plants in electricity markets.
As the current electricity market framework mandates submission of gener-
ation schedules in the form of energy bids prior to actual power generation,
wind power plants face difficulties in matching their schedules due to imper-
fect wind forecasts. Given a real participation of wind farms in the electricity
market, the differences between the contracted and actual production may
lead to imbalance penalties, wherein wind power plants are penalized for the
deviation from their scheduled generation plan. These penalties may result
in a significant reduction in earnings of wind power plants in the electricity
markets. Enabling profitable market participation of wind power plants is
a necessity for efficient wind integration which needs to be addressed.
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1.3 Focus and Goals

The focus of this thesis lies on addressing the challenge of profitable par-
ticipation of wind power plants in short-term European electricity markets.
The problem is approached considering the opportunity to use energy stor-
age and participation in intra-day markets for mitigation of the variability
in wind power generation.

A two-stage model is proposed in this thesis to optimize the market portfolio
of a wind power producer. In the first stage, optimal hourly bids for the
day-ahead market are prepared. A novel concept of storage capacity reserva-
tion contract, which acts as a hedging mechanism against unfavourable wind
power realizations, is introduced. The second stage of the model involves
operation of the storage device. The increase in accuracy of wind power
forecasts as we move closer to actual production is utilized by employing
a Model Predictive Control (MPC) framework. The MPC uses a receding
horizon control strategy to schedule the operation of the storage device and
to decide buying/selling bids for the intra-day adjustment markets.

The goals of this thesis are the following:

• Develop a model for strategic bidding of wind power plants to minimize
the risk of imbalance penalties.

• Quantify the benefits of storage as compared to the situation when a
wind power plant participates in electricity markets on its own.

• Estimate the incremental cost of using storage resources for mitigation
of power imbalances in the electricity grid caused wind power plants.

The following assumptions are explored in this thesis:

• Storage devices need not be owned by wind power plant. This is realized
by decoupling the day-ahead market bids from the operation of storage
device. Instead, it is proposed that the wind power owner procures
storage capacity (MW) from a second-party owned storage device in
the form of storage reservation contracts.

• Making best use of wind certainty gained over time. The improvement
in wind forecasts as we move from day-ahead to actual delivery pe-
riod is used in the proposed model to make the best use of available
information in the decision-making process during the second stage.

1.4 Report Outline

The report is structured as follows:

Chapter 2 contains a brief introduction to European electricity markets
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and presents an overview of some useful and interesting work previously
done in addressing the challenge of profitable participation of wind power
plants in markets. Chapter 3 introduces the research questions which are
dealt in this thesis and describes structure of the two-stage model developed.
Chapter 4 discusses day-ahead scheduling stage of the model in which bids
for day-ahead market are decided along with storage reservation contracts.
Chapter 5 presents a detailed description of the intra-day operation stage of
the model. Chapter 6 describes the small case study performed to evaluate
performance of the proposed model as compared to the participation of wind
power plants in the electricity markets on their own. Chapter 7 summarizes
the main concepts presented in this thesis and discusses its findings in the
light of their relevance in current market framework.
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Chapter 2

Literature Review

This chapter presents an overview of some of the related work done to facili-
tate profitable market participation of wind power plants. In the first section,
a brief introduction to European electricity markets is presented. The second
section describes a selection of the literature on previous approaches in this
field. The chapter ends with a brief summary discussing the key findings
from literature.

2.1 European Electricity Markets

Since start of the deregulation process in early 1990’s, European electric-
ity industry has undergone several changes. The electricity markets are
transitioning from vertically integrated monopolies into a liberalized mar-
ket. In contrast to before, when power sector was not open to competition
and electricity prices were fixed by regulators according to the cost of gen-
eration, transmission and distribution, prices are now determined by the
equilibrium between supply and demand. In addition to traditional Over-
the-Counter (OTC) bilateral electricity trading where prices and volumes
are not made public, the share of electricity traded in power exchanges,
where it is traded in an efficient and transparent manner just like any other
commodity, is increasing. A comprehensive overview of the legal framework
associated with electricity deregulation in Europe and a detailed note on the
evolution of European electricity markets so far is presented in [6].

Although several differences exist between the power exchanges within Eu-
rope in terms of regulations and functions, typically products are traded in
a power exchange in the following markets:

Spot Markets These are markets associated with actual physical delivery
of energy and usually involve two different sub-markets: day-ahead markets
and adjustment or intra-day markets. In the day-ahead market, hourly con-
tracts for supply and demand of electricity for the hours of the next day

7
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are traded. This market is usually cleared using an hourly auction mech-
anism. In this auction, the supply bids are stacked in increasing order of
marginal costs of generation to obtain a so-called “merit order curve”, which
is then matched with the electricity demand curve to determine the price of
electricity. Since there is quite a time difference between the clearing of day-
ahead market (usually at or before noon on the day before actual delivery),
market participants are provided with an opportunity to make short-term
changes in the generation and consumption bids in a subsequent adjustment
or intra-day market. Intra-day markets are usually cleared bilaterally, us-
ing continuous trading mechanism, wherein the bids may be submitted or
changed close (usually until 45 minutes before) to delivery time. These bids
are automatically matched and executed each hour at the clearing time and
the prices, which are published publicly, are based on the supply and de-
mand in that hour. The risk associated with continuous trading mechanism
is that if the bid submitted is not complemented by a suitable counter-party,
it is not executed at all.

Balancing Market Unlike other traded commodities, a balance between
production and consumption of electricity at each instant has to be estab-
lished to ensure secure and efficient operation of power systems. The bal-
ancing market or regulation market, managed by the Transmission System
Operator (TSO), ensures that this balance between generation and load is
maintained. Even though demand-side management practices are increas-
ing, the load or consumption of electricity is largely inflexible as of today.
Hence, power producers who participate in the market have to assist the
TSO in its task of keeping power balance through participation in the bal-
ancing markets. Although the settling mechanism varies between countries
in Europe, the primary motive of this market is the same. Power producers
are penalized for positive or negative deviations from their production sched-
ules established by the spot markets. In some countries, the power producer
may be penalized or paid depending on whether the direction of deviation
from its schedule supports the generation-load balance of the whole system
or opposes it.

While [7], [8] and [9] provide a good overview on the functioning of Euro-
pean electricity markets, the following papers strengthen the understanding
behind such a market design and highlight the effects that increasing par-
ticipation of wind energy has on these market structures.

R. Green (2008) [10] This review article provides a comprehensive in-
troduction to electricity market designs all over the world, specifically high-
lighting the salient features of and differences between the European and
American markets. Furthermore, the implications on these markets of mov-
ing towards a power system with higher shares of wind energy are identi-
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fied. These two market frameworks are then evaluated with regards to their
adaptability to these changing needs.

Xie et al. [11] presents a detailed discussion on the challenges faced by
present-day power systems as we move from negligible penetration of wind
power towards a state with higher shares of wind. The focus is on identifying
the impacts of integrating wind power on operational aspects of power sys-
tems such as scheduling and frequency regulation, which ultimately should
be reflected in the prices for imbalance penalties.

C. Hiroux and M. Saguan (2009) [3] In this paper, the authors discuss
the pertinence of current renewable support schemes and electricity market
designs in handling higher shares of wind energy in the net generation pool.
The question whether wind power producers should participate in electricity
markets is weighed in terms of its benefits and risks. In their concluding
remarks, the authors recommend the facilitation of increased participation
of wind power plants in markets. This recommendation stems from their
analysis which shows that positive effects of this on power systems through
maximization of net social welfare outweighs the negative point of increased
risks for these power plants, which could be mitigated with readjustment of
support schemes and market designs.

2.2 Wind Power and Electricity Markets

The problem of financial losses arising from market participation of wind
power has been dealt in the literature mainly through three different ap-
proaches.

2.2.1 Optimal Bidding using Stochastic Models

Stochastic programming, incorporating uncertain wind power forecasts and
market prices as stochastic variables, is used in this approach to develop
models which result in optimal bidding strategies for a wind power producer
participating in electricity spot markets on its own. The following lists a
selection of works which use this approach.

J. Morales, A. Conejo and J. Pérez-Ruiz (2010) [12] This paper
presents a model for maximization of the profit expected from a wind power
producer trading in a multi-stage electricity market consisting of day-ahead,
adjustment and imbalance markets. The optimal bids are obtained by solv-
ing a stochastic linear program which provides a robust solution to a large
number of scenarios. The scenarios are drawn using available forecasts for
the uncertain parameters, namely, wind power availability and the prices in
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these three markets. Additionally, a suitable risk parameter introduces the
trade-off between making bids to increase expected profits and the risk of
incurring imbalances with such a market position.

P. Pinson, C. Chevallier and G. Kariniotakis (2007) [13] The au-
thors in this paper solve a risk-averse robust optimization problem to obtain
optimal market bids, taking probabilistic forecasts into consideration. In-
stead of using point forecasts for wind power, this approach considers wind
forecasts to contain information on their uncertainty in the form of predic-
tive distributions. Furthermore, the methodology also factors the sensitivity
that a wind power producer may have towards prices in imbalance markets.

J. Matevosyan and L. Söder [14] presents a method for minimization
of imbalance penalties for a wind power producer bidding in a single stage
spot market. While considering the wind forecast errors to be a stochastic
variable, the authors formulate a mixed-integer program taking into account
the different cases for prices of imbalance penalties. This implies that im-
balance price is a payment received if the TSO has an energy deficit and the
wind power plant produces excess energy than its bid or if the TSO has a
excess energy and the wind power plant produces less than its bid. In the
other two cases, the imbalance price is a penalty which needs to be paid.

F. Bourry and G. Kariniotakis (2009) [15] In this paper, a model is
developed in which the intra-day or adjustment markets are considered as
a way to reduce imbalance penalties from participating in the day-ahead
market. The intra-day market is considered to take place through a con-
tinuous trading mechanism such that suitable parameters are developed to
model the probability that the submitted bids may or may not be accepted.
The study showcases that participation in intra-day markets based upon the
improved wind forecasts gained until their market clearing could possibly re-
duce imbalance penalties by up to 18%.

2.2.2 Hedging with Financial Instruments

In addition to the two markets described in Section 2.1, power exchanges
also provide a platform for trading of structured financial products linked
to the trades of electricity. In this platform, called Futures or Derivatives
Market, financially-settled contracts are traded which may or may not be
linked with physical delivery of electricity. Prices of the structured prod-
ucts or contracts traded in these markets (such as forwards, options, swaps,
etc. collectively known as derivatives), are closely related to the price of
electricity in the spot market. As a result, among other benefits, these con-
tracts provide an opportunity for power sellers and buyers to manage their
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risk by hedging against unfavorable movements of prices in the spot mar-
ket. A similar concept is applied to manage the risk of unfavorable wind
realizations.

K. Hedman and G. Sheblé (2006) [16] While treating the uncertainty
in wind power generation as an explicit risk involved in their market partic-
ipation, the authors in this paper have proposed the use of options to hedge
against unfavorable wind outcomes. It is argued that such options provide
an opportunity to mitigate the risk involved with trading wind without the
need for large investment in storage technologies. Comparing with stor-
age operation, the paper demonstrates that such a method of purchasing
options is financially competitive even if the capital investment for storage
is not factored in the analysis. In their concluding remarks, however, the
authors point out that on account of the lack of a complete and competi-
tive options purchasing market for wind energy at the present time, more
progress has to be achieved in this direction before the method becomes
completely viable.

2.2.3 Using Energy Storage

The rationale behind the third approach is that once a commitment to the
market is made in terms of energy bids, suitable operation of a storage
device enables a wind power plant to stick to its schedule, thereby avoiding
imbalance penalties. Selected papers based on work following this approach
have been picked up for further discussion and are presented in the following.

E. Castronuovo and J. Peças Lopes (2004) [17] In this paper, the
authors formulate a linear optimization problem for combined daily opera-
tion of a wind power plant with a small hydro generation/pumping facility.
The uncertainty in wind power is reflected in a large number of wind power
time-series scenarios generated from Monte Carlo simulations and optimal
operation strategy is obtained for each of these scenarios. The goal is to iden-
tify the best operation strategy among all these solutions, for a combined
wind-hydro power plant with little water storage capacity, considering the
constraints and costs involved in the operation of storage device. However,
the wind-hydro power plant considered in this paper does not participate in
a a multi-stage market. Instead, the ensemble is remunerated in accordance
with a previously known variable feed-in tariff, such that it is incentivized
to produce more during peak hours. The results show that such a joint op-
eration has a potential to reduce the need for maintaining reserves by the
TSO.

J. Angarita, J. Usola and J. Mart́ınez-Crespo (2009) [18] Consid-
ering combined market participation of a wind-hydro ensemble, the authors
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present a stochastic optimization technique wherein intra-day market bids
of the hydro generator are optimized such as that the expected revenue from
joint operation is maximum. A key feature of this model is that the hydro
power plant is interested in joint bid only if the avoided costs of imbalance
penalty from mitigating wind deviations are higher than the reduction in its
profits were it operating on its own. Therefore, it is shown that the cost of
imbalance penalties, among other factors such as wind forecast horizon and
size of the hydro reservoir, plays a crucial role in decision-making in such a
joint operation case.

J. Garćıa-González, R. Muela, L. Santos and A. González(2008)
[19] In this paper, a two-stage stochastic programming approach is followed
for joint operation of wind generator and pumped-storage hydro power
plants. The optimal bids for the day-ahead market are considered to be
“here-and-now” decisions, that is they are not dependent on the realizations
of uncertain parameters namely, wind outcome and market price. These un-
certain parameters are dealt in the the form of discrete scenarios based on
which second stage decisions on intra-day operation of the storage (pumped
hydro) are taken.

L. Costa, F. Bourry, J. Juban and G. Kariniotakis (2008) [20] splits
the problem into two phases: scheduling and operation. In the first stage,
taking into account the limitations of the storage device, profit maximizing
bids for the day-ahead market are calculated by solving a Dynamic Pro-
gram (DP). In addition, a series of set-points are obtained which consist of
expected power outputs from the storage device according to wind forecasts
available at the closing of day-ahead market. In the operation stage which
follows, any deviations from the expected wind outcome is compensated in
real-time as far as possible by suitable storage operation.

In addition to the three approaches discussed above, some other novel meth-
ods to sell wind power profitably in electricity markets can be found in
literature. One interesting study is performed recently by Bitar et al.
(2012) [21], which proposes an alternative market where wind power pro-
ducers sell electricity at various price-differentiated reliability levels of supply
to flexible consumers who are willing to bear the risk of insufficient supply
in exchange for lower prices. For example, a 95% reliable supply contract,
which would be cheaper than a 100% reliable supply, has a condition that
there exists a 5% probability that the supplier may not deliver the electricity.
It is argued that such a variable-reliability market in place of present-day
firm markets shifts the risk burden of uncertain wind in-feed from operat-
ing reserves to flexible customers, thereby eradicating the need for running
expensive and carbon-intensive thermal generators as reserves.
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2.3 Key Findings from Literature

After studying the approaches followed in previous works, important findings
from the literature study is listed in the following.

• In the first among the three approaches identified in Section 2.2, the
most prevalent method of solving stochastic optimization problems
is to obtain a robust solution which fares well even with the worst
among all the scenarios considered. Any excess wind is then traded in
the intra-day markets, which usually involve continuous trading such
that there exists a probability that the bid is not accepted. Due to the
absence of storage, if intra-day selling bids are not accepted, forced
curtailment of wind production is followed which leads to the costs of
lost opportunity.

• The use of financial options for mitigating wind uncertainty, as sug-
gested in [16] appears promising, but it is limited by the lack of liq-
uidity in such contracts for wind power plants at present.

• The interesting alternative market proposed in [21] potentially erad-
icates the need for operational reserves. But it requires a significant
change in the present market designs and coordinated demand-side
management responses from consumers. The relevant infrastructure
and know-how for operating such a variable-reliability market, though
partially exist today, significant further research is required before it
could be implemented.

• In the approach using energy storage devices, the study in [17] fo-
cusses more on the operational aspects of a wind-hydro ensemble rather
than on market participation. In [18], an interesting combined bidding
strategy is introduced for a similar wind-hydro joint power plant, al-
beit considering participation in intra-day markets only wherein the
uncertainty in wind power outcome is considerably reduced.

• The studies following the energy storage approach have so far consid-
ered a joint wind-storage power plant. This assumption, in essence,
makes the storage device a stand-by power plant, very similar to
the existing operational reserves, except that it is operated by wind
power plants themselves. However, unlike the traditional reserve power
plants such as gas turbines which have high operational costs and are
desired to be used only if needed, most energy storage devices have
lower operation costs. Therefore, operating a storage as a stand-by
for a wind power plant involves a great amount of lost opportunity
costs for the storage device of earning revenues from participating in
the electricity markets on its own.
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• In addition, it has been assumed that the storage devices are owned by
the wind power plants themselves. This requires a considerably large
capital investment and adds to the financial burden of wind power
plant owners.



Chapter 3

Model Overview

This chapter begins by highlighting the choice of storage consideration in
this thesis and poses the research questions relevant in that context. The
structure of the proposed model is presented in the subsequent section while
the final section presents a discussion on wind uncertainty modeling adopted.

3.1 Research Questions

The problem of enabling profitable market participation for wind power
plants can be approached in several ways, as illustrated in the previous
chapter (Section 2.3). For a wind power producer without access to storage,
as shown in Fig. 3.1, bidding higher than point forecasts involves the risk
that actual wind production during delivery of the bids in the next day
could be insufficient to meet the schedule. On the other hand, higher the
amounts bid in the day-ahead market, higher is the earnings. Bidding with
amounts lower than wind power forecast allows the flexibility to curtail wind
production if it is in excess. But through curtailment, the wind power

High day-ahead market profits

vs.

Risk of insufficient production

Flexibility of curtailment

vs.

Lost opportunity costs

Hours

Pwind

Prated

0

Pforecast

Figure 3.1: Illustration showing the regions for choice of day-ahead market
bids for a wind power producer without storage. Prated is the rated power
(MW) of the wind power plant whereas Pforecast is the wind power forecast
(MW) for the hours shown.
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producer incurs loss of opportunity costs of making profits in the day-ahead
markets.

In this thesis, we consider the use of storage which has the potential to
eliminate risks of insufficient wind production through discharging operation
and to avoid curtailment losses through charging. The costs and risks shown
in Fig. 3.1 in both the regions around the wind forecast could thus be
eliminated with consideration of storage. Such an approach involving joint
operation of a wind power plant and energy storage presents two interesting
sub-challenges:

1. How to choose optimal energy bids to be placed in the day-ahead market
taking into account the wind and price uncertainty and the availability
of storage?

For each hour of the day, one could place bids lower than the forecasts
in day-ahead market to start with and then compensate the imbalances
by operating a storage resource in real-time or by selling the excess
wind generation in intra-day market to maximize profit opportunities.
This could be possible because the accuracy of wind forecast is im-
proved in the short-term, before the gate closure of intra-day markets.
Otherwise, one could place bids higher than the forecasts in day-ahead
market believing in optimistic wind outcomes and then compensate in
real-time, as required, using storage operation or through buying bids
in intra-day markets.

2. How to operate the storage device during the delivery period when fore-
cast errors of wind are reduced and the cleared prices of the day-ahead
market are known?

As wind forecast improves when actual delivery period is approached,
the plant operator has to make a decision whether to compensate for
the imbalance (between the physical production from the wind power
plant and day-ahead bids submitted) through the use of storage device
or by placing buying and selling bids in the intra-day market.

3.2 Model Structure

A two-stage model developed in this thesis attempts to address the two
research questions formulated in the previous section. While the first stage
prepares optimal bids for the day-ahead market considering the availability
of storage, the second stage optimizes the operation of storage device and
the participation in intra-day markets through a predictive controller.

Fig. 3.2 shows a flowchart for the two stages and illustrates the relationship
between them and their interactions with power markets and the electricity
grid. The chart is divided into four blocks: Power markets, Electricity grid
and the two stages Day-ahead scheduling and Intra-day operation.
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DAY AHEAD SCHEDULING INTRA-DAY OPERATION
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Figure 3.2: Flowchart of the developed model showing the four blocks comprising it.
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Bids in hourly Day Ahead market for

Day: D, Hours: 1-24

Bids in hourly Intra Day market for

Hours: 1-24

Day: (D − 1) Day:D

Wind Certainty Gain Wind and Price Uncertainty

1 12
Hours

24 1
Hours

24

Figure 3.3: Time-line of the two-stage market showing the uncertain param-
eters. The ( ) represents market clearing for the Day-ahead market for Day
D and each ( ) represents a market clearing point for the hourly intra-day
markets.

Power markets A time-line of the market structure considered in this
thesis is presented in Fig. 3.3. The power markets comprise an auction-
based day-ahead market (cleared at 12 PM on the previous day) and hourly
continuous intra-day market with bidding allowed until 45 minutes prior to
the start of each hour. This market structure is modeled after the func-
tioning of European Power Exchange (EPEX) Spot Market and has already
been discussed in detail in Chapter 2. As shown in Fig. 3.3, while bid-
ding in the day-ahead markets at 12 PM in Day (D − 1), the wind power
producer must consider the uncertain wind power outcomes lying 12 to 36
hours ahead. Participating in the intra-day market allows the wind power
producer to take advantage of the certainty gained as delivery period is ap-
proached. The separation of the problem into two stages, shown in Fig.
3.2 as Day-Ahead Scheduling and Intra-Day Operation blocks, allows the
incorporation of updated wind forecasts into the modeling.

Day-Ahead Scheduling As shown in Fig. 3.2, available forecasts for
wind power and electricity market prices for the next day are used as inputs
to calculate profit maximizing bids for the day-ahead markets. In addition
to the hourly bids, a sequence of hourly storage capacity reservations (MW)
is determined. As shown in the illustration in Fig. 3.4, reserved capacity
of storage device provides a band around the bid such that mismatches
occurring within it can be handled using proper storage operation. It can
be observed that mismatches where actual wind generation outcome is higher
than day-ahead bids are covered by charging reservation. On the contrary,
mismatches occurring in the other direction are covered by the discharging
reservation.
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Figure 3.4: Illustration for the concept of charging and discharging reserva-
tions for a sample day.

Intra-Day Operation In the intra-day operation stage, as shown in Fig.
3.2, a supply contract is received after the day-ahead market settlement is
complete. In this stage, a Model Predictive Control (MPC) based frame-
work uses the updated wind forecasts to determine a minimum cost optimal
control strategy for the storage device such that the supply contract is met
as closely as possible. Additionally, as shown in the figure, bids for partici-
pating in the intra-day markets are also prepared in this stage.

Electricity Grid During physical delivery period in Day D, the wind
power plant feeds the generated wind power to the grid. Suitable balancing
power is supplied from the storage device such that deviations from the
bids made in the day-ahead markets are minimized. As indicated by the
bidirectional arrows in Fig. 3.2, it is assumed that the point of grid-coupling
for the storage device allows bidirectional power flow. This enables the
mitigation of both deficit and excess of actual wind generation as compared
to the day-ahead supply contract.

3.3 Modeling Assumptions

For simplifications in modelling, the following assumptions are made through-
out this thesis:

1. The prices of electricity in spot markets are assumed to be perfectly
known. This assumption eliminates the price uncertainty which is one
of the two uncertainties faced by the wind power producer, shown in
Fig. 3.3.
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2. In the day-ahead scheduling stage, the wind power producer is allowed
to make only selling bids for the auction in day-ahead market.

3. The wind power producer in both day-ahead markets and intra-day
markets is assumed to be a “price-taker”. This assumption is based on
grounds that the wind power producer is supposed to be small in size
and therefore has no influence on the market prices. However, with
increasing shares of wind energy in the net generation mix, hours with
high wind generation result in lower electricity market prices. This
is because as of today, wind power plants place their bids in the day-
ahead markets at zero marginal cost. Hence, higher amounts of energy
from wind are reflected by a shifting of the aggregated supply curve
towards the right. Considering the demand to be inflexible, this leads
to a market settlement at a lower price than expected. The reader is
directed to [22] for a detailed analysis of the interaction between the
amounts of wind energy generated and electricity prices.

4. In contrast to some European power market mechanisms (as men-
tioned in Section 2.1), the imbalance settlements are assumed to in-
volve penalties for deviation from the day-ahead schedule, regardless
of the its direction and whether the overall system is in power excess
or deficit.

3.4 Wind Power Uncertainty Modeling

As shown in Fig. 3.3, while deciding bids for day-ahead market, the wind
power producer faces an uncertainty in wind power outcome with a look
ahead time of 12 to 36 hours. This uncertainty needs to be suitably consid-
ered in modeling.

The hourly wind power output of a wind farm is considered a random vari-
able X with a continuous probability distribution function (pdf), P (X), such
that:

P (X) = f(µ, σ, ρ, · · · ), (3.1)

where µ, σ, ρ, · · · represent the parameters of the distribution namely,
expected value, standard deviation, skewness and so on.

This modeling allows the use of any continuous probability distribution for
characterizing the uncertainty in wind power forecasts, provided,

• its probability distribution function (pdf) and cumulative distribution
function (cdf) can be expressed analytically, and

• the inverse cdf or quantile function exists.
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The wind power point forecast (W ) obtained from forecasting tools is chosen
as the expected value (µ) for the probability distribution.

A variety of tools have been proposed in the literature to predict wind power
in the form of point forecasts. Numerical Weather Prediction (NWP) mod-
els, statistical models based on historical data and models based on Artificial
Neural Networks (ANN) are some of the most commonly used tools for fore-
casting wind power. Since a detailed analysis of forecasting techniques is out
of scope of this thesis, interested readers are directed to [23] which provides
a comprehensive review of prevalent wind power forecasting methods.

Other parameters (σ, ρ, · · · ) defining the probability distribution P (X) can
be estimated analytically using expressions similar to Eq. 3.2, where stan-
dard deviation (σ) of the distribution P (X) is expressed as a function g of
the ratio between point forecast value (W ) and the rated capacity of the
wind power plant. Such modeling of σ however, needs correct identification
of the underlying function g through rigorous analysis of historical data.

Standard Deviation, σ = g

(
Wind Point Forecast (W) [MW]

Rated Plant Capacity [MW]

)
(3.2)

Curve fitting techniques provide a simple yet effective method for estimation
of these parameters. For instance, Fig. 3.5 shows fitting of the historical
day-ahead forecast errors in wind power to a standard normal distribution,
N (0, σ). From this fitting, the standard deviation, σ for the distribution can
be estimated. In [24], wind power forecasting error distributions are studied
in detail and standard normal distribution is identified to be suitable for
fitting errors occurring in short-term wind forecasting.

From this simplified modeling of the wind power forecast errors, it follows
that wind power realizations can be expressed in the form of a random
variable X having a normal pdf P (X), centered around the point forecast
value, W and with a standard deviation σ estimated from curve fitting
techniques. Fig. 3.6 illustrates the modeling of uncertain wind availability
as the random variable X.
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Figure 3.5: An example for curve fitting of errors in historical day-ahead
wind forecasts to a standard normal distribution for estimating the standard
deviation, σ of the distribution P (X).
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Figure 3.6: Modeling of wind uncertainty as a normally distributed random
variable X.



Chapter 4

Day-Ahead Scheduling

This chapter discusses the optimization problem which is solved to obtain
optimal bids for the day-ahead markets.

4.1 Problem Formulation

As discussed in Chapter 3, wind power forecasts and electricity market prices
are used in the day-ahead scheduling stage to solve an optimization problem
for computing profit maximizing bids for the day-ahead market.

The assumptions taken in deciding bids for the day-ahead market are listed
in the following.

• At this stage it is possible to undertake an unconstrained optimization
with respect to the capacity (MW) limits of the storage device. This
should, in principle, allow the wind power producer to sell the contract
for supply of balancing power to one or more storage asset owner(s) in
the market, as required.

• As described in the previous chapter (Section 3.2), the uncertainty in
wind power values is characterized in the form of hourly probability
distributions, with the point forecasts as the expected value. The
prices for the day-ahead market are assumed to be deterministic.

The objective function in the optimization problem P1 used in this stage
comprises two terms which are related to each other:

• The bids for day-ahead market are decided based on a trade-off be-
tween the expected revenues from the day-ahead market (λDA ·B) and
the costs associated with it. These costs include the storage capacity
reservation costs (λCu and λCd) and imbalances penalties (λI). Storage
capacity reservations (Cuh and Cdh) act as a hedging mechanism against
unfavourable wind power realizations for the wind power plant owner
for which he has to pay a certain premium (reservation costs).

23
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• In addition to the above trade-off, the second term in the objec-
tive function (|

∑24
h=1(λ

S
hSh)|) incentivizes energy-neutrality of the bids

during the day. This term relates bids in the day-ahead market to the
realistic operation of storage device during the next day. It implies
that the net energy expected to be used for charging the storage de-
vice in the next day should be as close as possible to the net energy
expected to be discharged. This ensures that the difference between
energy content of the storage device at the start of the day and that
at the end of the day is minimized. This is a crucial consideration for
achieving the decoupling of storage device from the wind power plant,
which is a goal of this thesis.

The parameter ρ ∈ [0, 1], which relates the two terms of the objective func-
tion, can be used as a weight for the energy neutrality criteria and is specified
beforehand. If ρ is chosen equal to 1, the energy neutrality term is elimi-
nated from the optimization problem.

The optimization problem P1 is stated in the following:

Optimization Problem (P1)

max
(z,α,S)∀h

ρ

24∑
h=1

(ΛT
h zh)− (1− ρ)|

24∑
h=1

(λShSh)|

subject to, ∀h, zh =
[
Bh Cuh Cdh Rh (Iuh + Idh)

]
(4.1)

0 ≤ αh < 1 (4.2)

buh = Φ−1
(

1 + αh
2

)
(4.3)

bdh = Φ−1
(

1− αh
2

)
(4.4)

bdh ≤ Bh ≤ buh (4.5)

Cuh = (buh −Bh) (4.6)

Cdh = (Bh − bdh) (4.7)

Rh =

{ |−(B1)2|
2δ , ∀h = 1

|(Bh−1)
2−(Bh)

2|
2δ , ∀h 6= 1

(4.8)

Iuh = E(X | Xh > buh)− buh (4.9)

Idh = bdh − E(X | Xh < bdh) (4.10)

Sh = (Bh −Wh) (4.11)
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Variables

h : Hours of the day (1,2,· · · ,24).
Xh : Random variable for wind power (MW) outcome in hour h.
Wh : Available point forecast for wind power (MW) in hour h.
Bh : Bid (MW) in day ahead market in hour h.
αh : Dynamically selected risk tolerance factor which decides the

position of bounds in hour h, such that αh ∈ [0, 1).
buh, b

d
h : Upper and lower bounds (MW) for day-ahead market

bid Bh in hour h.
Cuh , C

d
h : Up (charge) and down (discharge) storage capacity reserva-

tion (MW) in hour h.
Rh : Ramping energy (MWh) spent between hours (h−1) and h.
Iuh , I

d
h : Expected imbalances (MW) occurring in hour h.

Sh : Expected use of storage (MW) in hour h.

Functions

P (X) : Probability distribution of wind power random variable X.
| • | : Absolute value function.
Φ−1 : Quantile function or inverse cumulative distribution function

(cdf) for the probability distribution P (X).
E : Expected value function for a part of the probability distri-

bution P (X), truncated as defined in the domain.

Parameters

ρ : Fixed parameter to control the strictness of energy-
neutrality requirement in day-ahead bids.

δ : Maximum change in bids allowed in bids between subsequent
hours (MW/hour).

Costs and Rewards

λDA
h : Day-ahead market price (e/MW) forecast in hour h.

λCu
h , λCd

h : Storage reservation costs (e/MW) in the up (charging) and
down (discharging) directions for the hour h.

λRh : Penalty for ramping energy (e/MWh) in the hour h.
λIh : Penalty for imbalances (e/MW) in the hour h.

Λh : Cost vector for hour h,(−
[
−λDA

h λCu
h λCd

h λRh λIh

]
).

λSh : Cost for storage operation (e/MW) in the hour h.

4.1.1 Explanation of Constraints

The constraints involved in the problem P1, given by Eqns. (4.2)-(4.11),
are explained in detail in the following.



26 CHAPTER 4. DAY-AHEAD SCHEDULING

1. The constraint in Eq. (4.2) provides bounds for the choice of αh.
The decision variable αh is a dynamically selected parameter which
indicates the preference to place bids (Bh) different from the point
forecast of the hour (Wh) if economical storage resources are available.
Since Wh represents the expected value for the wind power realization
random variable (Xh), there is implicit risk involved with bidding in
markets with volumes different from Wh. However, as the availability
of storage reservations is incorporated, it is possible to tolerate some
risk in this respect and bid strategically in order to maximize profits.
αh defines an interval for the bounds [bdh, b

u
h], within which the bid

for the hour (Bh) is chosen. In the absence of storage or if the cost
of storage is very high, the optimizer chooses αh close to zero and
the bounds are very close to the point forecast Wh. In that case, the
bids are placed very close to the point forecast (Wh) for the hour. The
reason for choosing a left-closed, right open interval [0,1) for the choice
of αh in the constraint in (4.2) is elaborated in the next paragraph.

2. The bounds bdh and buh, defined in equality constraints in Eqns. (4.3)
and (4.4), are calculated from the inverse cumulative distribution func-
tion (cdf) or quantile function of the probability distribution of ran-
dom variable Xh for a chosen value of αh. The bounds may or may
not be symmetrical about the mean value Wh depending on whether
the probability distribution P (Xh) is symmetrical about Wh or not. If
P (Xh) is considered as a Normal distribution, Fig. 4.1 demonstrates
the change in position of bounds bdh and buh with respect to change in
αh. It can be observed that if αh is chosen by the optimizer to be 0.9,
the bounds bdh and buh are chosen such that 90% of outcomes of random
variable (Xh) lie within the interval [bdh, b

u
h], with 5% of the realiza-

tions lying outside the bounds on either sides. On the other hand, if
the optimizer chooses αh to be 0.5, the interval [bdh, b

u
h] moves closer to

the expected value Wh and only 50% of wind outcomes (Xh) now lie
within the bounds. From the definition for the bounds, it follows that
αh = 1 makes the interval [bdh, b

u
h], unbounded as (-∞,∞). Hence,

the value 1 is excluded from the choice space for the variable αh, as
expressed in Eq. (4.2).

3. The upper and lower bounds for choosing the bid Bh is defined by the
constraint in Eq. (4.5). The bid is chosen from the interval [bdh, b

u
h] as

demonstrated in Fig. 4.1.

4. The constraints in Eqns. (4.6) and (4.7) determine the storage capacity
(MW) to be reserved in both charging (up) and discharging (down)
directions. The storage capacity reservations for the hour (Cuh and Cdh)
are given by the distance of the bid Bh from the corresponding upper
bound buh and lower bound bdh, respectively.
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Figure 4.1: Change in position of bounds, bdh and buh for hour h with αh.
The bid, Bh, is chosen from the interval [bdh, b

u
h].

buhbdh BhWh

P (Xh)

Xh

Figure 4.2: Region for imbalance penalty for a given reserved storage capac-
ity. Imbalances are expected for wind power realizations Xh lying outside
the interval [bdh, b

u
h].

5. On moving towards very high shares of wind energy, flexible ther-
mal units in the power systems may need to accommodate frequent
changes to their scheduled production. This leads to the higher costs
involved with frequent ramping in thermal units. Consequently, it can
be foreseen that the grid operator or the Transmission System Opera-
tor (TSO) may opt to impose restrictions on wind power producers in
regards to changes between subsequent hourly bids. The formulation
in the constraint in Eq. (4.8) penalizes extreme changes in the bids
between subsequent hours. This modeling of ramping costs in the form
of energy lost during ramping follows from the minimum cost thermal
unit ramping model proposed in [25], where it is described in detail.

6. The constraints in Eqns. (4.9) and (4.10) allow the penalization of ex-
pected imbalances. As highlighted in Fig. 4.2, imbalances are expected
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only for wind power realizations which lie outside the interval [bdh, b
u
h],

where the reserved storage capacities is not enough to accommodate
the difference between bid Bh and wind outcome random variable Xh.

7. According to the modeling adopted in this thesis, at the time of making
bids for the day-ahead market, wind power point forecast Wh is the
best guess available for possible wind power realizations. The equality
constraint in Eq. (4.11) defines the expected storage use for each hour
during the actual production in the next day. When the bid Bh is
higher than point forecast Wh, the value of Sh is positive implying
that the storage device is more likely to be charged than discharged
and vice-versa. This expected use of storage is then optimized over
the entire day such that energy neutrality during the day, as described
previously, can be maintained.

4.2 Choice of Optimal Solution

Fig. 4.3 demonstrates the trade-offs in the optimization problem P1 and
the choice of optimal bid Bh within the bounds defined by bdh and buh for
the hour h. As indicated by direction of the arrows, the cost for imbalance
penalty (λIh) provides an incentive for αh to be high and correspondingly,
the bounds to be farther apart, thereby reducing the region for imbalances
shown in Figure 4.2. On the other hand, the costs for storage use (λSh)
push αh and correspondingly the bounds interval [bdh, b

u
h] to be as small as

possible to minimize expected storage use. An optimal trade-off is reached
depending on the values of these costs and a suitable value for αh is chosen
by the optimizer. It can be seen that the value of optimal bid Bh is chosen
from the sample space of all values within the interval [bdh, b

u
h], depending

upon the trade-off between the reward from day-ahead market (λDA
h ) and

the costs of storage reservations (λCd
h and λCu

h ).

The outputs of interest from the solution of the optimization problem P1,
which are used in the intra-day operation stage of the model, are listed in
the following.

1. Day-ahead market bids, B (MW), which contain a series of hourly bids
to be placed in the day-ahead market for the next day.

2. Storage capacity reservations, Cd and Cu (MW), each of which contain
hourly values of reserved storage capacity for discharging and charging
operation respectively.
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Figure 4.3: Trade-offs in optimization problem P1 and factors influencing
the choice of optimal bid Bh to be placed in day-ahead market for the hour
h.

4.3 Implementation

The problem in the day ahead scheduling stage (P1) is a constrained non-
linear optimization problem. YALMIP [26] toolbox for MATLAB is used to
formulate the problem.
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Chapter 5

Intra-Day Operation

In this chapter, scheduling of the storage device operation and participation
in intra-day markets are discussed. The receding horizon control strategy
adopted in this stage of the model is described in detail.

5.1 Objectives

The objectives of the intra-day operation stage are listed in the following.

• Contracted production schedule received from day-ahead market clear-
ing should be tracked as closely as feasible, such that imbalance penal-
ties are minimized.

• Storage device should be operated within the limits of reserved capac-
ity obtained from the results of day-ahead scheduling stage.

• Suitable buying and selling bids for the intra-day markets should be
prepared.

These intra-day market bids are expected to serve two purposes as mentioned
in the following.

1. Buying bids in the intra-day market should be made to mitigate the
imbalances occurring in the hours when the power reservations for
storage (MW) or the energy content of the storage device (MWh) are
not sufficient.

2. Bids should be made in the intra-day market to buy and sell energy in
order to maintain the daily energy neutrality (discussed in Section 4.1)
of the storage device. This ensures that the energy content (MWh) of
storage device at the end of the day doesn’t deviate from the value at
the start of day.

31
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As discussed in Chapter 3, an intra-day market with continuous trading
framework is considered in this thesis. Therefore, the risk that bids in
hourly intra-day market may not be cleared on grounds of lacking a suitable
counter-party should be reflected in terms of higher costs associated with
bids in this market. This provides a preference for operating the storage,
whenever feasible, over participating in the intra-day markets.

5.2 Introduction to Model Predictive Control

A Model Predictive Control (MPC) based operation framework is used to
achieve the objectives of intra-day operation stage stated in the previous
section. MPC is a broad term for any control formulation where an op-
timal control trajectory for a given system is obtained through solving a
constrained or unconstrained cost minimization problem. The first step in-
volved in MPC is the mathematical modeling of underlying system. The
chosen model should be capable of capturing the process dynamics in order
to precisely predict the future outputs, whilst being simple enough to be ef-
ficiently implemented. State space models are most commonly used for this
purpose on account of their simplicity and flexibility. The reader is directed
to [27] for a detailed discussion on designing aspects of MPC systems and
their implementation in MATLAB.

Even though in practice MPC can be implemented in several ways, in this
thesis a receding horizon control approach is followed which is briefly ex-
plained in the following.

Fig. 5.1 illustrates the control strategy used in MPC where u(t), y(t) and
r(t) represent the control, output and reference signals for a minimal work-
ing example system. The goal of the control system is to match output of the
system y(t) with the reference signal r(t). In each time step t, a trajectory of
control signals for the optimization horizon N is chosen by considering the
past and current values of states and outputs of the system. The trajectory
is then optimized through the minimization of a cost function, which in this
case involves the errors between reference signal r(t) and predicted output
y(t) for the entire horizon N . The cost function could also include bounds
and penalties on the magnitude of control signal u(t). Once a minimum
cost solution is reached, the control signal for the present time step u(t) is
applied to the system, while the other calculated values are discarded.

At the next time step (t+1), a problem of reduced size is solved while keep-
ing the end of the optimization horizon fixed. The control signal for this
time step u(t+ 1) is thus obtained from the solution.

The above process is repeated until the end of horizon is reached. The result
is a sequence of optimal control signals u∗(t) for the entire horizon such that
goal of the control system is achieved.
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(t− 1) t (t+ 1) (t+ k) (t+N)

u(t)

y(t)

r(t)

N

End of

Horizon

Figure 5.1: An illustration for Model Predictive Control (MPC) receding
horizon operation strategy. At each time step t and optimization problem
is solved to obtain the optimal control signals u(t) for minimizing the errors
between the expected output y(t) and the reference signal r(t) over the entire
horizon N .

5.3 Control System in Intra-Day Operation

As discussed in Chapter 3, the intra-day operation of storage device is decou-
pled from the day-ahead scheduling. However, the day-ahead market supply
contract and storage capacity reservations must be taken care of during the
intra-day operation stage. The block diagram in Fig. 5.2 shows the open-
loop control system architecture adopted in this stage. The commands for
operation of the storage and bids for intra-day markets constitute the con-
trol signals which are manipulated in order to track the day-ahead market
bids (reference) through the receding horizon controller. The improved wind
forecasts as we move closer to the delivery period act as disturbance signals
to which the controller must adapt its control strategy.

The control system consists of three blocks: System Model, Future States
and Outputs Predictor and Receding Horizon Controller, whose functions
are discussed in detail in the following.

5.3.1 System Model

The first step involved in control of storage device using MPC is the state
space modeling of the system, which is illustrated in Fig. 5.3 and is described
by Eqns. 5.1-5.4.
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Figure 5.2: Block diagram for the Model Predictive Control (MPC) frame-
work used in the intra-day operation stage. The receding horizon controller
calculates control signals such that the output tracks the reference signal
with minimum errors.

Grid/
Intra-Day Market

Updated Wind

Forecasts
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PW PG

PD PC
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Figure 5.3: Modeling of the system for intra-day operation stage. The arrows
illustrate the direction for positive power flow.
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ES(h+ 1) = ES(h) + τ · [ηC.PC(h)− PD(h)

ηD
] (5.1)

PG(h) = [PD(h)− PC(h)]︸ ︷︷ ︸
Storage Operation

+PB(h)− PS(h)︸ ︷︷ ︸
Intra-Day Market

+ PW(h)︸ ︷︷ ︸
Wind Forecast

(5.2)

PD(h) · PC(h) = 0, ∀h (5.3)

PB(h).PS(h) = 0, ∀h (5.4)

Variables

h : Hours of the day (1,2,· · · ,24).
τ : Time of operation (1 hour).
ES(h) : Energy stored in storage device at the start of hour h.
PD(h), PC(h) : Discharging/Charging power from/into storage device

in hour h.
PB(h), PS(h) : Buying/Selling bid made in intra-day market in hour

h.
PG(h) : Power in-feed into the grid from wind and storage en-

semble in hour h.
PW(h) : Best available forecast for wind power in hour h.
ηD, ηC : Discharging/Charging efficiency of the storage device.

The change in energy content of the storage device with time is quantified
by Eq. 5.1, while the output from the system is defined by Eq. 5.2. Eqn. 5.3
ensures that the storage device is not charged and discharged in the same
hour. Finally, Eq. 5.4 eliminates the situation when both buying and selling
bids are made in the intra-day market for the same hour.

State Space Model

The resulting state-space model can be expressed in matrix form as follows:

[
ES(h+ 1)

]︸ ︷︷ ︸
x(h+1)

=
[
1
]︸︷︷︸

A

[
ES(h)

]︸ ︷︷ ︸
x(h)

+
[
−τ
ηD

τ · ηC 0 0
]

︸ ︷︷ ︸
B


PD(h)

PC(h)

PB(h)

PS(h)


︸ ︷︷ ︸

u(h)

(5.5)

PG(h)︸ ︷︷ ︸
y(h)

=
[
1 −1 1 −1

]︸ ︷︷ ︸
D


PD(h)

PC(h)

PB(h)

PS(h)


︸ ︷︷ ︸

u(h)

+
[
1
]︸︷︷︸

E

PW(h)︸ ︷︷ ︸
v(h)

(5.6)
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Eqns. 5.5 and 5.6 can be written in short as:

x(h+ 1) = Ax(h) +Bu(h) (5.7)

y(h) = Du(h) + Ev(h) (5.8)

5.3.2 Prediction of State and Output Variables

The next step in the MPC system is the prediction of states and outputs for
the entire horizon. The end of horizon is always kept fixed at the last hour
of the day. This consideration follows from the energy neutrality criteria
discussed in Section 4.1 wherein the storage device is operated such that its
energy content at the end of the day is same as that at the start of the day.

In each hour h, the optimization is performed for a horizon N which is
reduced every hour starting from 24 hours until the end of the day is reached.
This means that in the first hour N = 24 and as we move towards the end
of day, the final value of N = 1 is reached when optimization is performed
only for the last hour of the day.

For the optimization horizon N at any given hour h, the future control
trajectory can be expressed as:

U(h) =
[
u(h) u(h+ 1) u(h+ 2) · · · u(h+N − 1)

]T
(5.9)

The updated wind power forecasts which are received in each hourly step
are expressed in the vector V , such that it always contains the latest forecast
information for each hour.

V (h) =
[
v(h) v(h+ 1) v(h+ 2) · · · v(h+N − 1)

]T
(5.10)

The future state variables can be calculated as following:

x(h+ 1|h) =Ax(h) +Bu(h)

x(h+ 2|h) =Ax(h+ 1) +Bu(h+ 1)

=A2x(h) +ABu(h) +Bu(h+ 1)

x(h+ 3|h) =Ax(h+ 2) +Bu(h+ 2)

=A3x(h) +A2Bu(h) +ABu(h+ 1) +Bu(h+ 3)

Finally the X vector which contains predicted state vectors in the hour h
can be written as:

X =
[
x(h+ 1|h) x(h+ 2|h) x(h+ 3|h) · · · x(h+N |h)

]T
(5.11)

Similarly, the future outputs are calculated as in the following:

y(h+ 1|h) = Du(h+ 1) + Ev(h+ 1)

y(h+ 2|h) = Du(h+ 2) + Ev(h+ 2)
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(a) Step 1.
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Figure 5.4: Illustration for the first two steps of receding horizon controller.
In each step, the best available forecasts for each hour of the remaining
horizon are used and control signals (storage operation and intra-day market
bids) for the immediate next hour are selected.

Collecting all the values, the predicted output vector Y in the hour h is
expressed as:

Y (h) =
[
y(h+ 1|h) y(h+ 2|h) y(h+ 3|h) · · · y(h+N |h)

]T
(5.12)

The prediction of future values for states and outputs allows the optimiza-
tion algorithm in the receding horizon control to iteratively choose the best
control strategy for the entire horizon at the hour h, as described in the next
section.

5.3.3 Receding Horizon Control

The receding horizon controller block of the system, as shown in Fig. 5.2,
receives information in the form of updated wind forecasts and the day-
ahead scheduled supply contract. At each hour h, a constrained optimization
problem (P2) is solved to obtain the optimal control trajectory UOPT.

The concept of receding horizon control is illustrated in Fig. 5.4. In Step 1
shown by Fig. 6.3(a), the optimization problem P1 uses 1-hour ahead wind
power forecast for Hour 1, 2-hour ahead forecast for Hour 2, 3-hour ahead
forecast for Hour 3 and so on. The result of the optimization is UOPT(1)
which contains the optimal storage charge/discharge schedule and intra-day
buy/sell bid for Hour 1. In the next step shown by Fig. 6.3(b), updated wind
forecasts, that is, 1-hour ahead forecast for Hour 2, 2-hour ahead forecast
for Hour 3 and so on are used to solve P1 again with a reduced problem size.
The results are optimal control signals for Hour 2, UOPT(2). The process
is repeated until Hour 24 is reached and the vector UOPT containing the
optimal control trajectory for the entire horizon is obtained.
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Optimization Problem (P2)

min
u

1∑
N=24

 24∑
h=(25−N)

[
e(h)TΩimbe(h) + u(h)TΩconu(h) + w(h)TΩexw(h)

]
s. t.,∀h, e(h) = (y(h)− Psched(h)) (5.13)

y(h) = Du(h) + Ev(h) (5.14)

x(h+ 1) = Ax(h) +Bu(h) (5.15)

u1,h · u2,h = 0 (5.16)

u3,h · u4,h = 0 (5.17)

0 ≤ u1,h ≤ Cd
h (5.18)

0 ≤ u2,h ≤ Cu
h (5.19)

0 ≤ u3,h ≤ Pmax
B (5.20)

0 ≤ u4,h ≤ Pmax
S (5.21)

(Emin − ω(h)) < x(h) < (Emax + ω(h)) (5.22)

w(h) ≥ 0 (5.23)

Variables and Costs

Psched(h) : Day-ahead scheduled power (MW) in hour h.
Cd
h , C

u
h : Discharging/Charging capacity reservations (MW) made

in hour h.
Pmax
B , Pmax

S : Maximum buying and selling bids (MW) allowed in intra-
day market.

Emin, Emax: Minimum and maximum operating limits allowed for en-
ergy content (MWh) in the storage device.

y(h) : Controller output, in-feed to the grid (MW) for hour h.
e(h) : Error (MW) in tracking the day-ahead scheduled power

for hour h.
x(h) : Energy Content (MWh) of storage device at the start of

hour h.
u(h) : Control vector in the hour h, (

[
PD PC PB PS

]
).

v(h) : Best available wind forecast for the hour h.
w(h) : Auxiliary variable (MWh) imposing soft constraints over

energy storage limits.
Ωimb : Cost for errors in meeting schedule.
Ωcon : Costs for control variables.
Ωex : Cost for exceeding storage operating limits.
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The optimization problem P2 consists of three quadratic cost terms
which are minimized. In addition to the penalty (Ωimb) for errors in track-
ing the day-ahead scheduled bids, the objective function includes the cost
for control vector (Ωcon) and the cost of exceeding storage operating limits
(Ωex).

Ωcon is the cost for implementing control signals, which are storage sched-
uling and intra-day market bids. As discussed in Section 5.1, the risk asso-
ciated with continuous trading mechanism of intra-day market is accounted
for in the cost vector Ωcon through preference of storage operation, over
intra-day market bidding. Furthermore, to maintain the energy-neutrality
of the storage device suitable buying and selling bids are made in the intra-
day markets such that net earnings from participation in hourly intra-day
markets over the optimization horizon is maximized. This is accomplished
through preference of buying bids in intra-day market in hours when market
prices are expected to be low and vice-versa.

Ωex penalizes the violation of allowed storage operation range defined by
[Emin, Emax] through soft constraints, as expressed in Eq. (5.22). The soft
constraints allow violation of operating limits of energy content (MWh) of
storage if required, albeit at very high costs.

The constraint in Eq. (5.16) ensures that the storage device is not charged
and discharged at the same hour. Similarly, constraint in Eq. (5.17) allows
only buying or selling intra-day market bids in every hour.

The constraints in Eqns. (5.18)-(5.21) provide bounds on the control vari-
ables. The hourly storage capacity reservations received from the day-ahead
scheduling stage are enforced as upper bounds for storage operation. The
bounds on maximum intra-day selling and buying bids are pre-defined.

5.4 Controller Implementation

In each hour, the optimization problem (P2) is solved to obtain the charg-
ing/discharging schedule for the storage device for the next hour along with
the intra-day buying/selling bids. The scheduled operation is undertaken
irrespective of the actual wind realization in the next hour. This is be-
cause the storage device is decoupled from wind power producer and hence
it doesn’t provide real-time imbalance mitigation support. Instead, once the
schedule for storage capacity operation to the wind power producer(s) has
been made, the storage device owner may choose to further participate in
price arbitrage for maximizing its profits.

The optimization problem (P2) is in the form of a quadratic program with
mixed integer constraints (Eqns. 5.16-5.17). It is formulated in MAT-
LAB using the YALMIP [26] toolbox and solved using IBM’s ILOG CPLEX
solver.



40 CHAPTER 5. INTRA-DAY OPERATION



Chapter 6

Results and Discussion

This chapter defines various cases for validating the model proposed in this
thesis. After the description of suitable simulation parameters and raw data,
the simulation results for the various cases are compared and discussed.

6.1 Cases Definition

To validate performance of the model developed in this thesis, we consider
a wind power producer which participates in an auction-based day-ahead
market. Four cases are defined with regards to the actions taken by wind
power producer to minimize the occurrence of imbalances thereafter. Table
6.1 summarizes the characteristics of the various cases defined.

Case Description

Perfect Forecast Perfect Wind Forecasts, No storage re-
quirement, No intra-day market participa-
tion

Only Intra-day Uncertain wind, No storage access, With
intra-day market participation

Only Storage Uncertain wind, With storage, No intra-
day market participation

Storage+Intra-day Uncertain wind, With storage access,
With intra-day market participation

Table 6.1: Summary of the various cases.

In the Perfect Forecast case, the wind power producer faces a hypothetical
scenario of having perfect information of future wind realization before mak-
ing day-ahead market bids. Thus, the requirements of storage operation or
intra-day market participation are alleviated.

Wind uncertainty is taken into account in all other cases. Since wind power

41



42 CHAPTER 6. RESULTS AND DISCUSSION

forecasts move closer to the actual value as the power delivery period is
approached, the case of Only Intra-day involves bidding in the intra-day
markets with better forecasts. This strategy of participating in intra-day
markets, which is recently becoming of interest for wind power plants, has
been described in detail in [28]. Due to the growing interest of wind power
plants to participate in intra-day markets, it is apt to compare the perfor-
mance of this strategy with the model developed in this thesis.

Cases Only Storage and Storage+Intra-day involve a second-party owned
storage device for mitigation of wind power imbalances. In the Only Stor-
age case, no bids in the intra-day markets are allowed during the intra-day
operation stage.

6.2 Simulation Parameters

Simulations for a time period of 10 days are performed for each of the cases
defined in the previous section. The various model parameters used in the
simulations are described in the following.

6.2.1 Wind Power Plant Data

In all cases, a medium-size onshore wind power farm is considered with an
assumed installed capacity of 50 MW.

6.2.2 Storage Device Parameters

Table 6.2 shows parameters of the storage device considered in cases which
include the use of storage. The size of storage device at 20 MWh could be
deemed minimally sized for a 50 MW wind farm. However, such a choice of
sizing demonstrates the idea that imbalances of a wind power plant could
be managed by a relatively smaller sized storage device.

Parameter Units Value

Net Energy Capacity MWh 20

Maximum Operating Energy Limit
(SOC=0.8)

MWh 16

Minimum Operating Energy Limit
(SOC=0.2)

MWh 4

Initial Energy Stored (SOC=0.5) MWh 10

Rated Power Capacity MW 10

Discharging (Turbining) Efficiency 0.9

Charging (Pumping) Efficiency 0.9

Table 6.2: Characteristics of the storage device considered for simulation.
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Figure 6.1: Gain in accuracy of forecasts from previous day to 1-hour ahead.

6.2.3 Wind Power Data

The robustness of the model developed is tested with respect to the uncer-
tainty in wind power. It is assumed that wind power at every time step is
the sum of available wind power forecast and a stochastic component.

Wind Power Forecasts For the optimization problem in day-ahead sched-
uling stage, hourly wind power forecasts (W ) generated one day in advance
have been used. For the same days, optimal storage operation is performed
by the Model Predictive Control (MPC) system using forecasts with smaller
look-ahead periods.

The hourly forecast data used is obtained by aggregating the data from
several wind farms across Germany for the months January-March 2008,
normalized by the total installed capacity in those months. Forecasts with
smaller look-ahead times which are used in the intra-day operation are ap-
proximations to real data and are generated via statistical methods.

It is expected that using real forecasts for the intra-day stage instead of sta-
tistically generated data would be more accurate. For the sake of validating
the proposed model, statistically generated data works fine as long as the
inter-temporal trends in the forecasts are preserved. This implies that the
forecasts should move closer to the actual value as its look-ahead time is
reduced. Fig. 6.1 shows the wind power forecast for a sample day consider-
ing different look-ahead times. It can be noticed that errors in wind power
forecasts are considerably reduced in closer look-ahead time, as expected.

Stochastic Component The stochastic component in wind power is mod-
eled using a Markov chain mechanism. The method followed in generat-
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Figure 6.2: Transition probability matrix for the wind power error, using a
Markov chain with 50 states.

ing wind power realizations is called Markov Chain Monte Carlo (MCMC)
method and is motivated by [29], where it is described in detail.

In this method, first the stochastic process (in this case, wind power forecast
error) is discretized into a pre-defined number of states. Further, it is as-
sumed that the forecast errors at the present time step t depends only on the
errors at the last time step (t− 1) and not on the errors that have occurred
further back in the past. With such a first-order Markov chain modeling and
using measured historical values of the forecast errors, a transition proba-
bility matrix containing the probabilities for transitions between the states
is constructed. Finally, using the knowledge of the state of forecast error
at the initial time step (t − 1), a large number of scenarios for the future
forecast error realizations can be extracted.

For the simulation in this thesis, normalized hourly values of wind power
forecasts and actual wind in-feed in the whole of Germany over the years
2007-2011 are used. The hourly forecast errors are then used to “train” the
transition probability matrix. Fig. 6.2 shows the resulting transition prob-
ability matrix when a 50-state first-order Markov chain is constructed using
the forecast error data. The block-triangular structure of the matrix sug-
gests that the wind forecast errors are strongly correlated in time.

Fig. 6.3(a) shows an example of the wind power scenarios drawn for day-
ahead market participation of the 50 MW wind power plant considered in
the Only Intra-day case. Since the bids for the day (D) in the EPEX Spot
day-ahead markets have to be decided before Hour 12 in the previous day
(D − 1), the wind power scenarios drawn for the Hours 13-24 of the day
(D − 1) are termed as “lost scenarios”.
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(a) Wind power outcome scenarios generated before the day-ahead mar-
ket clearing.
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(b) Wind power outcome scenarios generated before each hourly intra-
day market clearing.

Figure 6.3: Hourly wind power production scenarios for the day D generated
using MCMC. The area shaded in “blue” represents the hours of the day
(D − 1).

Fig. 6.3(b) shows the scenarios drawn for participation in hourly intra-day
markets in the day (D) in the Only Intra-day case. The forecast values in
this case contain the wind power forecasts for each hour of day D made with
a look-ahead time of 1 hour.
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6.2.4 Electricity Market Price Data

For simplification in modeling, it is assumed that the prices of electricity
in day-ahead and intra-day markets are deterministic and are known prior
to beginning of the simulation. In the simulation, these prices are sourced
from historical market prices for Germany published in European Power
Exchange (EPEX) Spot [30], the online public portal for The European
Energy Exchange (EEX) spot markets. The values of market prices in day-
ahead and intra-day markets used are presented in Appendix A.

6.2.5 Intra-day Market Clearing

While bidding in intra-day markets, best forecasts available at the time
of closing (assumed 45 minutes prior to real-time delivery) of the hourly
markets are used. However, it has been assumed that all such bids have
found a suitable counter-party and hence have been accepted. It is important
to note that this assumption is optimistic because as more and more wind
power producers participate in the intra-day markets, the chances of finding
a suitable counter-party is reduced. This situation arises because wind power
plants in one geographic region, relying on single meteorological forecast
source, are likely to bid in the same direction (buying or selling). Therefore,
a skewness in selling bids (supply) and buying bids (demand) in the intra-day
market can be expected which would result in lower chances of acceptance
of the bids.

6.2.6 Modeling of Imbalances

The procedure followed for modeling the occurrence of imbalances during
real-time delivery of power in each case is discussed in the following.

• Perfect Forecast case involves zero imbalance penalties.

• Only Intra-day case allows intra-day bids to be placed one hour ahead
of physical delivery taking the best available forecasts into account.
However, the actual wind realization is manifested in the form of 5000
scenarios drawn using the MCMC method discussed in the previous
section. The scenarios are drawn one hour ahead of the actual value, as
shown in Fig. 6.3. The imbalance for hour h is calculated using the Eq.
6.1 where P hACT, P

h
DA and P hID represent the actual wind realization, bid

made in day-ahead market and the buying(+)/selling(−) bid made in
the intra-day market.

P hIMB = |P hACT − (P hDA + P hID︸ ︷︷ ︸
Adjusted Bid

)| (6.1)
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Figure 6.4: Expected imbalance payments at the end of the day for different
cases.

• Only Storage and Storage+Intra-day cases allow scheduling of storage
operation using hour-ahead wind forecasts. Thus, imbalances occur if
the scheduled operation of storage and cleared intra-day bids are not
sufficient in mitigating the difference between actual wind realization
and the day ahead market bid, as shown in Eq. 6.2. P hSO is the
scheduled discharging(+)/charging(−) storage operation for the hour
h.

P hIMB = |P hACT − (P hDA + P hID︸ ︷︷ ︸
Adjusted Bid

+P hSO)| (6.2)

6.3 Simulation Results

Since goal of the model developed in this thesis is to maximize the profits
of a wind power farm, we evaluate the net imbalance paid and the net
profits earned at the end of each day for the various cases discussed before.
Appendix A presents a table with the prices for imbalances and storage used
for calculating the imbalance payments and end-of-day profits.

6.3.1 Imbalance Payments

For the 10 days considered in the simulation, Fig. 6.4 shows the expected
imbalance payments made at the end of each day for different cases. Since
the Perfect Forecast case has no imbalances, it is excluded from the figure.
As can be observed from the figure, daily expected imbalance payments are
reduced for the Storage+Intra-day case on all days as compared with the
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Figure 6.5: Expected profits earned at the end of the day for different cases.

Only Intra-day case.

However in the Only Storage case, the lack of intra-day market participation
leads to loss of the certainty that sufficient storage energy (MWh) is available
for imbalance mitigation at all hours of the day. For example, in a given
day, several consecutive hours of deficits in wind outcome as compared to
day-ahead bids could lead to the emptying of storage device. This results
in the unavailability of sufficient stored energy for discharging requirements
in the subsequent hours. Conversely, the storage device could be full after a
number of consecutive hours of charging operation. Since in the modeling,
curtailment of wind power plants is not considered, imbalances are incurred
for subsequent hours of excess wind.

6.3.2 End-of-day Profits

Eq. 6.3 shows the method of calculating profits at the end of each day d:

Profitsd = RevenuesdDA + RevenuesdID − Imbalancesd − Storaged︸ ︷︷ ︸
Costs

(6.3)

The end-of-day revenues from intra-day (ID) market settlements could be
positive or negative depending upon the sum of all buying and selling cash
flows during the day. The expected profit is calculated as the average of
profits in all the scenarios. In cases involving the use of a storage, profits
are calculated after the cost of storage operation and reservation have been
accounted for.

As can be observed from Fig. 6.5, since the Perfect Forecast case is not
associated with either of the two costs mentioned in Eq. 6.3, the profits in
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Figure 6.6: Variability of the profits earned at the end of the day for various
cases. The boxplot shows the statistical distribution of profits for the Only
Intra-day case.

this case act as an upper bound for possible profits which can be made in the
day. In the Only Intra-day case, there are instances when expected profits
are negative. On a closer look, it is realized that this occurs for days with
low profits even for the Perfect Forecast case. This indicates that relatively
lower total energy is bid into the day-ahead market on those days and that
attempts at managing imbalances only using intra-day bids can be risky for
such days. On the other hand, using a storage device as in the other two
cases, leads to higher profits even after the costs of operating storage have
been taken into consideration.

The benefits of using a storage device becomes clearer if variability in the
end-of-day profits is evaluated, as shown in Fig. 6.6. The box-plot shows the
descriptive statistics for the end-of-day profits in the Only Intra-day case,
such that edges of the box represent the 25th and 75th percentiles and red-
colored ticks inside the boxes represent the median value. The variability of
profits indicated by whiskers around the box represents 99% of occurrences.
It can be observed that in the Only Intra-day case, the chances of making
less profits and even negative profits is quite high.

Hence, it can be concluded that even after including the costs of storage
operation, cases Only Storage and Storage+Intra-day lead to firm profits in
each day, without the downside risk of profit variability.

6.3.3 Cost of Storage for Imbalance Mitigation

For the Only Intra-day and Storage+Intra-day cases, Fig. 6.7 shows the
average cost of storage operation for incremental values of % imbalances
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mitigated for the 10 days of simulation. Percentage of imbalances mitigated
is defined as:

% Imbalances mitigated = 100×

(∑24
h=1 Deviations from schedule [MW]∑24

h=1 Scheduled power [MW]

)
(6.4)

These curves are obtained by changing the energy rating of storage device
(MWh) such that a saturation in % imbalances mitigated could be reached.
The figure clearly shows that the Storage+Intra-day case is preferable over
the Only Storage because for the same cost of storage, the percentage of im-
balances mitigated in the former is higher. As reasoned before, the absence
of the option to participate in intra-day markets leads to higher imbalances
in the Only Storage case.
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Figure 6.7: Expected costs of using storage for imbalance mitigation for
Only Storage and Storage+Intra-day cases.



Chapter 7

Conclusions and Outlook

This chapter summarizes the most important points discussed in the thesis
and provides an outlook which connects the concepts discussed in this thesis
with reality. The chapter ends with a list of some of the possible extensions
to this thesis.

7.1 Conclusion

In this thesis, a model for enabling profitable market participation of wind
power plants using energy storage devices is proposed. The idea that wind
power producers need not own storage devices is explored. The concept of
storage reservation contract is presented wherein wind power producers pay
a certain premium (reservation costs) for hedging against unfavourable wind
outcomes with respect to the day-ahead market bids. The energy neutrality
criteria for day-ahead bids strengthens the decoupling of operation of storage
device from the wind power producer. In the intra-day operation stage, the
storage device owner assists the wind power producer in tracking its day-
ahead market bids through suitable storage scheduling. The bids in intra-day
market allow the storage device owner to make buy/sell bids to maintain
the energy level in the storage device.

The model is validated by comparing it with the situation when wind power
plants participate in electricity markets on their own. The case study in
Chapter 6 shows the following:

1. Even after considering the costs of storage reservations and storage
operation, the proposed model leads to higher profits for the wind
power plants.

2. The profit variability associated with participation of wind power plants
in intra-day markets can be eliminated through the use of storage de-
vices.
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3. Combining the benefits of updated wind forecasts and suitable intra-
day market participation, a storage device of smaller energy capacity
(MWh) and power rating (MW) can mitigate the imbalances of a large
wind power plant to a great extent (Figure 6.7), while maintaining its
daily energy-neutrality.

Finally, it can be concluded that this thesis demonstrates that lost oppor-
tunity costs of having a joint wind-storage power plant can be avoided.
Mitigation of imbalance penalties for the wind power producer can be seen
as a secondary function the storage device while it can still participate in
electricity markets on its own.

7.2 Outlook

The basic concepts introduced in this thesis can be extended in different
directions.

7.2.1 Imbalance Costs as an Externality

In economic terms, imbalances in supply can be seen as an economic ex-
ternality. In that context, additional costs of running operational reserves
and expensive power plants can be considered as social costs caused by the
externality. With such modeling, it would be possible to reach an optimal
level of mitigation of the externality such that net social benefits after mit-
igation are maximized.

Figure 6.7 introduces the concept of determining the cost of storage required
for mitigating a certain percentage of imbalances. Similarly, the benefits of
mitigating imbalances need to be quantified and an economic optimal point
could be reached at which the marginal cost of mitigating imbalances would
equal the marginal benefits of having a firm supply.

7.2.2 Marginal Cost Bidding for Wind Power Plants

The cost of mitigating imbalances through storage operation could be viewed
as the cost of generation associated with wind power plants. The wind power
plants could then bid their “reliable” generation into the market, at the cost
of these imbalance mitigating storage contracts.
As of today, wind power plants bid in electricity markets at zero prices so
that most of their generation bids are accepted. However, as discussed in
Chapter 1, rising share of wind energy in net generation mix leads to higher
operation costs for power systems.
A market mechanism where wind power plants pay for their imbalances
themselves minimizes the requirements for running operational reserves by
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the Transmission System Operator (TSO) and the costs associated with
them, thereby maximizing overall social welfare.

7.3 Future Work

In the following, a list of some of the possible extensions for the work done
in this thesis is presented.

• The modelling of wind farm as a “price-taker” in this thesis should be
extended to include the situations when wind producers act as “price-
makers” in the market.

• While the errors in wind forecasts have been considered as being nor-
mally distributed around the available point forecasts, follow-up re-
search should identify the inter-hour correlations of the errors within
the day. The modeling should be extended to other continuous prob-
ability distributions as well.

• In the case study presented in Chapter 6, profits have been discussed
only from a wind power producer’s point of view. In further work,
the opportunity for the storage device owners to earn profits from
opportunities of price arbitrage in markets should be considered along
with the function of imbalance mitigation. Such an analysis could
evaluate the net social welfare when the storage is decoupled from
wind power plants as compared to a joint operation.

• In this thesis, the imbalances have been modelled such that any devi-
ation from the day-ahead schedule is penalized. Further study should
include the signals from the TSO regarding the state of the overall
system. If included in the intra-day operation stage of this model,
such signals could lead to even better decision making from a system’s
perspective.
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Appendix A

Optimization Parameters

Day-Ahead Scheduling

The values of various cost and reward parameters used in the solving the
optimization problem P1 in the day-ahead scheduling stage are shown in
Table A.1.

Parameters Values

Reward for Day-Ahead Bids λDA (Day-ahead market
price)

Cost for Imbalance Penalty (λI) 1.5 x λDA

Cost for Storage Reservations
(λCu , λCd)

0.1 x λDA

Cost for Storage Use (λI) 1 x λDA

Cost for Ramping Penalty (λR) 0.2 x λDA

Criticality of Energy-neutrality (ρ) 0.5 (equal weight for both
terms in P1)

Table A.1: Description of the parameters used in the day-ahead scheduling
stage.
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Intra-Day Operation

In the intra-day storage operation stage, the costs used in the optimization
problem P2 which is solved in the receding horizon controller are shown in
Table A.2.

Parameters Values

Cost for errors in meeting schedule
(Ωimb)

10 3

Cost for control variables (Ωcon) λID (Intra-day market price)

Cost for exceeding storage operating
limits (Ωex)

10 4

Table A.2: Description of the parameters used in the intra-day storage op-
eration stage.

Electricity Market Prices

Figure A.1 shows the day-ahead and intra-day market prices from 01.10.2013
to 10.10.2013 (10 days) which are used in the simulation.
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Figure A.1: Market price of electricity in EPEX Spot for 10 days (01.10.2013-
10.10.2013) [30].



Appendix B

List of Symbols

A list of symbols used, arranged by the chapters in which they appear, is
presented in the following.

Day-Ahead Scheduling

h Hours of the day (1,2,· · · ,24).
Xh Random variable for wind power (MW) realization in hour

h.
Wh Available point forecast for wind power (MW) in hour h.
Bh Bid (MW) in day ahead market in hour h.
αh Dynamically selected risk tolerance factor to decide position

of bounds in hour h.
buh, b

d
h Upper and lower bounds (MW) for day-ahead market

bid Bh in hour h.
Cuh , C

d
h Up (charge) and down (discharge) storage capacity reserva-

tion (MW) in hour h.
Rh Ramping energy (MWh) spent between hours (h−1) and h.
Iuh , I

d
h Expected imbalances (MW) occurring in hour h.

Sh Expected use of storage (MW) in hour h.
ρ Fixed parameter to control strictness of energy-neutrality

requirement in day-ahead bids.
δ Maximum change in bids allowed in bids between subsequent

hours (MW/hour).
λDA
h Day-ahead market price (e/MW) forecast in hour h.

λCu
h , λCd

h Storage reservation costs (e/MW) in the up (charging) and
down (discharging) directions in hour h.

λRh Penalty for ramping energy (e/MWh) in hour h.
λIh Penalty for imbalances (e/MW) in hour h.
Λh Cost vector in hour h.
λSh Cost for storage operation (e/MW) in hour h.
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Intra-Day Operation

h Hours of the day (1,2,· · · ,24).
τ Time of operation (1 hour).
ES(h) Energy stored in storage device at the start of hour h.
PD(h), PC(h) Discharging/Charging power from/into storage device in

hour h.
PB(h), PS(h) Buying/Selling bid made in intra-day market in hour h.

PG(h) Power in-feed into the grid from wind and storage ensemble
in hour h.

PW(h) Best available forecast for wind power in hour h.
ηD, ηC Discharging/Charging efficiency of the storage device.
Psched(h) Day-ahead scheduled power (MW) in hour h.
Cd
h , C

u
h Discharging/Charging capacity reservations (MW) made in

hour h.
Pmax
B , Pmax

S Maximum buying and selling bids (MW) allowed in intra-
day market.

y(h) Controller output, in-feed to the grid (MW) for hour h.
x(h) Energy Content (MWh) of storage device at the start of hour

h.
u(h) Control vector in the hour h.
v(h) Best available wind forecast for the hour h.
w(h) Auxiliary variable for (MWh) soft constraints over energy

storage limits.
Ωimb Cost for errors in meeting schedule.
Ωcon Costs for control variables:PD, PC, PB, PS.
Ωex Cost for exceeding storage operating limits.

Results and Discussion

P hIMB Power imbalance (MW) incurred in hour h.
P hACT Actual wind realization (MW) in hour h.
P hDA Scheduled bid (MW) in day-ahead market in hour h.
P hID Buying(+)/Selling(−) bid (MW) in intra-day market in hour

h.
P hSO Discharging(+)/Charging(−) storage operation(MW) in

hour h.

Profitsd End-of-day profits (e) in day d.

RevenuesdDA End-of-day revenues (e) from day-ahead market in day d.

RevenuesdID End-of-day revenues (e) from intra-day markets in day d.

Imbalancesd End-of-day imbalance payments (e) from intra-day markets
in day d.

Storaged End-of-day costs of storage (e) in day d.



Appendix C

CD-ROM Contents

The CD-ROM accompanying this report contains:

Literature PDFs of some of the literature used in this thesis.

Presentations The presentation slides.

Report Digital form and LaTex source code of this report.

Software The most important codes and programs developed during the
course of this thesis.
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